scholarly journals Highly Coherent Femtosecond Electron Pulses for Ultrafast Transmission Electron Microscopy

2019 ◽  
Vol 205 ◽  
pp. 08014
Author(s):  
Nora Bach ◽  
Armin Feist ◽  
Till Domrose ◽  
Thomas Danz ◽  
Marcel Möller ◽  
...  

We describe the implementation and detailed characterization of a laser-triggered field-emitter electron source integrated into a modified transmission electron microscope. Highly coherent electron pulses enable high resolution ultrafast electron imaging and diffraction.

Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
W. S. Zhang ◽  
J. G. Zheng ◽  
W. F. Li ◽  
D. Y. Geng ◽  
Z. D. Zhang

The boron-nitride (BN) nanocages are synthesized by nitrogenation of amorphous boron nanoparticles at 1073 K under nitrogen and ammonia atmosphere. The BN nanocages exhibit a well-crystallized feature with nearly pentagonal or spherical shape, depending on their size. High-resolution transmission electron microscopy studies reveal that they are hollow nanocages. The growth mechanism of the BN nanocages is proposed.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2009 ◽  
Vol 15 (S2) ◽  
pp. 368-369 ◽  
Author(s):  
S Duarte ◽  
A Avishai ◽  
A Sadan

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


Sign in / Sign up

Export Citation Format

Share Document