scholarly journals ESFR SMART PROJECT CONCEPTUAL DESIGN OF IN-VESSEL CORE CATCHER

2021 ◽  
Vol 247 ◽  
pp. 01002
Author(s):  
Joel Guidez ◽  
Antoine Gerschenfeld ◽  
Janos Bodi ◽  
Konstantin Mikityuk ◽  
Francisco Alvarez-Velarde ◽  
...  

Even before Fukushima accident occurred, the safety authorities have required that new power plant designs must take into account beyond design-basis accidents including possible core meltdown. Among the mitigation strategies, the corium retention must be ensured, so a core catcher is implemented in the design of the Generation IV Sodium-cooled Fast Reactor. An internal core catcher within the vessel (in-vessel retention) is the option chosen for the European Sodium-cooled Fast Reactor investigated in the H2020 ESFR-SMART project. The new core investigated in ESFR SMART with lower void effect has a better behavior in case of severe accident. The use of passive control rods is also an improvement for prevention of severe accident. Moreover, we have in the ESFR SMART core dedicated tubes for corium discharge that should allow discharging quickly the melted materials and should help to prevent large criticality. Calculations show that after several seconds, these discharge tubes begin to open, and the corium arrives by this preferential way on the core catcher, quicker and in limited quantities at the beginning of the accident. However, the core catcher is designed to be able to retain the whole core meltdown. Its design allows good possibilities of cooling by natural convection of sodium. Some thermal calculations were provided with a multi-layer concept but the global mechanical conception seems difficult. So a one layer core catcher in molybdenum, material compatible with sodium and used on the core catcher of the last SFR, started in 2016: BN 800, is investigated. Explanations are given on the choice of this material proposed for the catcher and used for thermal calculations. With the proposed design, the corium is spread on the core catcher and the residual power of the corium can be dispelled by natural convection by the sodium circulating around and above the core catcher without boiling of sodium if the melted core is less than about 25% of whole core. In case of bigger quantities of melted core, boiling of sodium could appear under the core catcher. Further less conservative calculations would be necessary to better know the limit.

Author(s):  
Liancheng Guo ◽  
Andrei Rineiski

To avoid settling of molten materials directly on the vessel wall in severe accident sequences, the implementation of a ‘core catcher’ device in the lower plenum of sodium fast reactor designs is considered. The device is to collect, retain and cool the debris, created when the corium falls down and accumulates in the core catcher, while interacting with surrounding coolant. This Fuel-Coolant Interaction (FCI) leads to a potentially energetic heat and mass transfer process which may threaten the vessel integrity. For simulations of severe accidents, including FCI, the SIMMER code family is employed at KIT. SIMMER-III and SIMMER-IV are advanced tools for the core disruptive accidents (CDA) analysis of liquid-metal fast reactors (LMFRs) and other GEN-IV systems. They are 2D/3D multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics codes coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. However, the experience of SIMMER application to simulation of corium relocation and related FCI is limited. It should be mentioned that the SIMMER code was not firstly developed for the FCI simulation. However, the related models show its basic capability in such complicate multiphase phenomena. The objective of the study was to preliminarily apply this code in a large-scale simulation. An in-vessel model based on European Sodium Fast Reactor (ESFR) was established and calculated by the SIMMER code. In addition, a sensitivity analysis on some modeling parameters is also conducted to examine their impacts. The characteristics of the debris in the core catcher region, such as debris mass and composition are compared. Besides that, the pressure history in this region, the mass of generated sodium vapor and average temperature of liquid sodium, which can be considered as FCI quantitative parameters, are also discussed. It is expected that the present study can provide some numerical experience of the SIMMER code in plant-scale corium relocation and related FCI simulation.


Author(s):  
D. Aquaro ◽  
N. Zaccari

This paper describes an original solution of core catcher to managing the in vessel retention of the Corium in the accidental event of the core meltdown. The solution envisaged intends to verify the possibility of managing the accidental event within the pressure vessel, ensuring that the CORIUM is confined and cooled. The core catcher, elaborated at the DIMNP, is made of a ceramic pebbel bed (Alumina Al2O3) contained in a metallic or Ceramic Matrix Composite (CMC) structure. The paper illustrates a theoretical model to simulate the thermal-mechanical behaviour of the pebble beds under extremely high loads, developed by the authors. This model has been used to design the core catcher and to determine the effective conductivity and the effective stiffness of the pebble bed. These values have been used in order to implement a numerical model of the core catcher. The results of the thermal and mechanical coupled simulation have permitted to determine the maximum time that the core catcher could resist and the mechanical resistance of the core catcher in the case of RPV external or internal cooling. The preliminary analyses performed have emphasised the good performance of pebble bed core catcher in order to mitigate the envisaged severe accident.


Author(s):  
Franco Polidoro ◽  
Flavio Parozzi

Considering a reasonable range of core meltdown accidents that can be postulated for GenIV sodium fast reactors, good safety margins exist for corium confinement and cooling inside the reactor vessel. Coolable conditions can be reached with the adoption of an ad-hoc device in the lower plenum, i.e. core catcher, capable to intercept the downward motion of the molten material and assure its cooling. Such device has to be designed to withstand to extreme thermal-mechanical conditions that rise as consequence of the large mechanical energy release and high temperature of molten corium. As this study has been carried out in the frame of the Collaborative Project on European Sodium Fast Reactor (CP ESFR) of the 7th Framework Programme Euratom, on the basis of the postulated accident conditions assumed for a reference 1500 MWe pool-type sodium fast reactor, the present work provides a preliminary analysis of the thermal response of a possible core catcher placed within the vessel. The dynamic thermal behaviour of the corium-structure-coolant system is analyzed with the computer code CORIUM-2D, an original simulation tool developed by RSE - Ricerca Sul Sistema Energetico, with the aim to assess the thermal interaction among corium, structures and coolant under severe accident conditions in both Light Water Reactors (LWRs) and Liquid Metal Fast Breeder Reactors (LMFBRs). The results of the numerical simulations show that the steady-state coolable configuration of core debris and the structural integrity of main containment structures can be reached in a number of partial core meltdown situations.


Author(s):  
Alexandre Lecoanet ◽  
Michel Gradeck ◽  
Xiaoyang Gaus-Liu ◽  
Thomas Cron ◽  
Beatrix Fluhrer ◽  
...  

Abstract This paper deals with ablation of a solid by a high temperature liquid jet. This phenomenon is a key issue to maintain the vessel integrity during the course of a nuclear reactor severe accident with melting of the core. Depending on the course of such an accident, high temperature corium jets might impinge and ablate the vessel material leading to its potential failure. Since Fukushima Daiichi accident, new mitigation measures are under study. As a designed safety feature of a future European SFR, bearing the purpose of quickly draining of the corium out of the core and protecting the reactor vessel against the attack of molten melt, the in-core corium is relocated via discharge tubes to an in-vessel core-catcher has been planned. The core-catcher design to withstand corium jet impingement demands the knowledge of very complex phenomena such as the dynamics of cavity formation and associated heat transfers. Even studied in the past, no complete data are available concerning the variation of jet parameters and solid structure materials. For a deep understanding of this phenomenon, new tests have been performed using both simulant and prototypical jet and core catcher materials. Part of these tests have been done at University of Lorraine using hot liquid water impinging on transparent ice block allowing for the visualizations of the cavity formation. Other tests have been performed in Karlsruhe Institute of Technology using liquid steel impinging on steel block.


Author(s):  
Mengwei Zhang ◽  
Bin Zhang ◽  
Jianqiang Shan

Nuclear reactor severe accidents can lead to the release of a large amount of radioactive material and cause immense disaster to the environment. Since the Fukushima nuclear accident in Japan, the severe accident research has drawn worldwide attention. Based on the one-dimensional heat conduction model, a DEBRIS-HT program for analyzing the heat transfer characteristics of a debris bed after a severe accident of a sodium-cooled fast reactor was developed. The basic idea of the DEBRIS-HT program is to simplify the complex energy transfer process in the debris bed to a simple one-dimensional heat transfer problem by solving the equivalent thermal conductivity in different situations. In this paper, the DEBRIS-HT program code is prepared by using the existing model and compared with the experimental results. The results show that the DEBRIS-HT program can correctly predict the heat transfer process in the fragment bed. In addition, the heat transfer characteristics analysis program is also used to model the core catcher of the China fast reactor. Firstly, the dryout heat flux when all of molten core dropped on the core catcher was calculated, which was compared with the result of Lipinski’s zero dimensional model, and the error between two values is only 11.2%. Then, the temperature distribution was calculated with the heat power of 15MW.


Author(s):  
María Freiría López ◽  
Michael Buck ◽  
Jörg Starflinger

After the Fukushima accident, the interest of the scientific community in severe accident research has been renewed. One of the severe accident research issues that needs to be further investigated is the potential for recriticality of the fuel debris, which is formed after the core meltdown. In this study, a conservative criticality evaluation of the Fukushima Daiichi Unit 1 debris bed has been carried out. Parameters, such as debris size, porosity, particle size, fuel burnup and the coolant conditions, including the water density and the content of boron, were considered. The effect of these parameters on the neutron multiplication factor was analysed and safety parameter ranges, i.e. zones where the recriticality can be totally excluded, have been identified. The content of boron in water required to secure the subcriticality was calculated for those zones with recriticality potential. It was found that recriticality is achievable for a wide range of fuel debris conditions. 1600 ppm B would ensure subcriticality under any conditions.


Author(s):  
Tomohisa Kurita ◽  
Mitsuo Komuro ◽  
Ryo Suzuki ◽  
Masato Yamada ◽  
Mika Tahara ◽  
...  

It is necessary to stabilize high temperature molten core in a severe accident for long time without electrical power. The core-catcher is to be installed at the bottom of the lower drywell in order to settle the molten core flowing down from a reactor vessel. Toshiba’s core-catcher system consists of a round basin made up of inclined cooling channels to get natural circulation of the flooding water. So it can cover all pedestal floor and can work in passive manner. We have been confirming an applicability of the core-catcher to actual plants. We have conducted full scaled tests with a unique cooling channel which has inclined rectangular flow section and changing the section area along flow direction in several conditions to evaluate the influence of the parameters on the natural circulation and heat removal capability. The test results showed good heat removal performance with nucleate boiling. However, we should consider a transformation of the cooling channel, for example, by the falling corium. So we calculate the assumed transformation of the cooling channel and conduct natural circulation tests with obstruction in the cooling channel. We confirm that natural circulation flow is stably continues and the cooling channel can remove prescribed heat, even if a flow area have got narrow locally.


Author(s):  
Andrei Rineiski ◽  
Clément Mériot ◽  
Marco Marchetti ◽  
Jiri Krepel ◽  
Christine Coquelet ◽  
...  

Abstract A large 3600 MW-thermal European Sodium Fast Reactor (ESFR) concept has been studied in Horizon-2020 ESFR-SMART (ESFR Safety Measures Assessment and Research Tools) project since September 2017, following an earlier EURATOM project, CP-ESFR. In the paper, we describe new ESFR core safety measures focused on prevention and mitigation of severe accidents. In particular, we propose a new core configuration for reducing the sodium void effect, introduce passive shutdown systems, and implement special paths in the core for facilitation of molten fuel discharge in order to avoid re-criticalities after a hypothetical severe accident. We describe and assess the control and shutdown system, and consider options for burning minor actinides.


Author(s):  
Andrea Bachrata ◽  
Fréderic Bertrand ◽  
Nathalie Marie ◽  
Fréderic Serre

Abstract The nuclear safety approach has to cover accident sequences involving core degradation in order to develop reliable mitigation strategies for both existing and future reactors. In particular, the long-term stabilization of the degraded core materials and their coolability has to be ensured after a severe accident. This paper focuses on severe accident phenomena in pressurized water reactors (PWR) compared to those potentially occurring in future GenIV-type sodium fast reactors (SFR). First, the two considered reactor concepts are introduced by focusing on safety aspects. The severe accident scenarios leading to core melting are presented and the initiating events are highlighted. This paper focuses on in-vessel severe accident phenomena, including the chronology of core damage, major changes in the core configuration and molten core progression. Regarding the mitigation means, the in-vessel retention phenomena and the core catcher characteristics are reviewed for these different nuclear generation concepts (II, III, and IV). A comparison between the PWR and SFR severe accident evolution is provided as well as the relation between governing physical parameters and the adopted mitigation provisions for each reactor concept. Finally, it is highlighted how the robustness of the safety demonstration is established by means of a combined probabilistic and deterministic approach.


Author(s):  
Wang Ning ◽  
Chen Lei ◽  
Zhang Jiangang ◽  
Yang Yapeng ◽  
Xu Xiaoxiao ◽  
...  

Great interest in severe accident has been motivated since Fukushima accident, which indicates that the probability of severe accident exists even though it is extremely small. Emergency condition is important in decision making in case of severe accident in NPP. Although many studies have been conducted for severe accident, there was necessary to investigate emergency condition of severe accidents that could possibly happen and haven’t been sufficiently analyzed. Since station blackout (SBO) happened in Fukushima accident, a number of studies in severe accidents initiated by SBO have been carried out. Off-site power is assumed to be lost during large break loss of coolant accident (LBLOCA), but there is few study to find out emergency condition during LBLOCA if both of off-site and on-site power are lost. A hypothetical severe accident initiated by LBLOCA along with SBO in a China three-loop PWR was simulated in the paper using MELCOR code. Emergency condition was obtained including start of core uncover, start of zirconium-water reaction, failure of fuel cladding and failure of the lower head. Thermal-hydraulic response of the core during the accident was also analyzed in the paper. The model for this study consists of 46 control volumes (27 in primary loop, 17 in secondary loop, 1 in containment and 1 in environment) and 52 flow paths. High pressure safety injection (HPSI) and low pressure safety injection (LPSI) are lost because of loss of on-site and off-site power, and simultaneously main feed water and auxiliary feed water of the steam generators are lost for the same reason. The accumulator can inject water into the core since it is passive and doesn’t need any power. Results of the study will be useful in gaining an insight into detailed severe accident emergency condition that could happen in a China three-loop PWR and may provide basis for severe accident mitigation.


Sign in / Sign up

Export Citation Format

Share Document