scholarly journals RESONANCE SELF-SHIELDING CALCULATION FOR PLATE-TYPE FUEL ASSEMBLIES

2021 ◽  
Vol 247 ◽  
pp. 03007
Author(s):  
Fan Xia ◽  
Hongchun Wu ◽  
Yunzhao Li ◽  
Jiewei Yang

Owing to its ability to handle arbitrary geometry and high computation efficiency, subgroup method is a widely used resonance self-shielding method. Ordinarily, the subgroup parameters are generated from homogenous resonance integral tables, and then can be used to calculate heterogeneous problems via the equivalence theory. However, it cannot provide accurate results especially for the plate-type assemblies with strong heterogeneity. What’s more, the fuel enrichment in plate-type assemblies is relatively much higher than the common rod-type ones. As a result, the resonance interference effect in plate-type fuels is particularly intense. To solve this problem and to provide accurate effective self-shielded cross-sections for plate-type fuel assemblies, 1-D plate problems are used to generate subgroup parameters. In order to deal with resonance interference, the resonance interference factors are generated by equivalent homogenous problems solved by 0-D hyperfine group solver. To avoid the computational burden caused by too many hyperfine group calculations, the importance of resonance isotopes is calculated in advance to select important resonance isotopes. Important and non-important ones are handled by different ways respectively. JRR-3M plate-type assemblies are used to test the newly method. Numerical results show that the relative errors of effective self-shielded cross-sections are generally less than 1.5% compared with the reference.

2001 ◽  
Vol 30 (2-3) ◽  
pp. 239-268 ◽  
Author(s):  
A. D. Caldeira ◽  
R. D. M. Garcia
Keyword(s):  

2017 ◽  
Vol 314 ◽  
pp. 11-28 ◽  
Author(s):  
Gaurav Verma ◽  
M. Eswaran ◽  
Samiran Sengupta ◽  
G.R. Reddy ◽  
Shaji Mammen

Author(s):  
Soo-sung Kim ◽  
Yong-jin Jeong ◽  
Jong-man Park ◽  
Yoon-sang Lee ◽  
Chong-tak Lee

A procedure for Electron Beam Welding (EBW) was developed for the manufacturing of a follower fuel assembly made of an AA 6061-T6 aluminum straps for a U-Mo plate-type fuel proposed to be used in the future in Korea’s Kijang Research Reactor (KJRR) project. The initial welding trials of the weld samples were carried out with a high vacuum chamber using the EBW process. After investigating the welds, EB welding parameters for the full-sized samples were optimized for the required depth of penetration and weld quality. Subsequently, the weld samples made by the filler specimens showed higher shearing strengths than those of the non-filler specimens. This procedure made by EBW process was also confirmed based on the results of the shearing strength test, an examination of the macro-cross sections, and the fracture surfaces of the welded specimens.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Salah Ud-Din Khan ◽  
Shahab Ud-Din Khan ◽  
Yang Zhifei

The research is conducted on the modification of neutron kinetic code for the plate type fuel nuclear reactor. REMARK is a neutron kinetic code that works only for the cylindrical type fuel nuclear reactor. In this research, our main emphasis is on the modification of this code in order to be applicable for the plate type fuel nuclear reactor. For this purpose, detailed mathematical studies have been performed and are subjected to write the program in Fortran language. Since REMARK code is written in Fortran language, so we have developed the program in Fortran and then inserted it into the source library of the code. The main emphasis is on the modification of subroutine in the source library of the code for hexagonal fuel assemblies with plate type fuel elements in it. The number of steps involved in the modification of the code has been included in the paper. The verification studies were performed by considering the small modular reactor with hexagonal assemblies and plate type fuel in it to find out the power distribution of the reactor core. The purpose of the research is to make the code work for the hexagonal fuel assemblies with plate type fuel element.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Duvan A. Castellanos-Gonzalez ◽  
João Manoel Losada Moreira ◽  
José Rubens Maiorino ◽  
Pedro Carajilescov

This article presents the validation of the Code for Thermal-hydraulic Evaluation of Nuclear Reactors with Plate Type Fuels (COTENP), a subchannel code which performs steady-state thermal-hydraulic analysis of nuclear reactors with plate type fuel assemblies operating with the coolant at low pressure levels. The code is suitable for design analysis of research, test, and multipurpose reactors. To solve the conservation equations for mass, momentum, and energy, we adopt the subchannel and control volume methods based on fuel assembly geometric data and thermal-hydraulic conditions. We consider the chain or cascade method in two steps to facilitate the analysis of whole core. In the first step, we divide the core into channels with dimensions equivalent to that of the fuel assembly and identify the assembly with largest enthalpy rise as the hot assembly. In the second step, we divide the hot fuel assembly into subchannels with size equivalent to one actual coolant channel and similarly identify the hot subchannel. The code utilizes the homogenous equilibrium model for two-phase flow treatment and the balanced drop pressure approach for the flow rate determination. The code results include detailed information such as core pressure drop, mass flow rate distribution, coolant, cladding and centerline fuel temperatures, coolant quality, local heat flux, and results regarding onset of nucleate boiling and departure of nucleate boiling. To validate the COTENP code, we considered experimental data from the Brazilian IEA-R1 research reactor and calculated data from the Chinese CARR multipurpose reactor. The mean relative discrepancies for the coolant distribution were below 5%, for the coolant velocity were 1.5%, and for the pressure drop were below 10.7%. The latter discrepancy can be partially justified due to lack of information to adequately model the IEA-R1 experiment and CARR reactor. The results show that the COTENP code is sufficiently accurate to perform steady-state thermal-hydraulic design analyses for reactors with plate type fuel assemblies.


2020 ◽  
Vol 23 (2) ◽  
pp. 69
Author(s):  
Surian Pinem ◽  
Tukiran Surbakti ◽  
Imam Kuntoro

ANALYSIS OF UNCONTROLLED REACTIVITY INSERTION TRANSIENT OF TRIGA MARK 2000 BANDUNG USING MTR PLATE TYPE FUEL ELEMENT. Analysis of uncontrolled reactivity insertion is very important for the safety of reactor operations. Determination of melting point limit, critical heat fluxes and melting temperatures of cladding are the main objectives for most of these studies to determine whether fuel temperature can withstand the transient insertion of reactivity. In this study, uncontrolled reactivity insertion transient was carried out due to the withdrawal of control rods in nominal power of 1 MW and 2 MW. Analysis of reactivity transient was carried out using the WIMSD/5B and MTRDYN codes. The WIMSD/5B code is used to generate cross sections and the MTRDYN program is used for analysis under transient conditions. Based on calculations on the initial power of 1 MW and 2 MW with an insertion of reactivity of greater than 0.5 $/s the reactor operation  is not safe because the fuel temperature exceeds the design limit. For reactivity insertion 0.5 $/s allows increased power can be stabilized by feedback reactivity. For 1 MW of nominal power, the maximum coolant temperature,  cladding and fuel are 86.39 oC, 164.86 oC and 165.33 oC, respectively. For 2 MW of nominal power,  the maximum coolant temperature,  cladding and fuel are 89.09 oC, 176.96 oC and 177.602 oC, respectively. Based on calculation,  It is concluded that the feedback mechanism can protect the fuel cladding from a local meltdown if reactivity insertion 0.5 $/s and the reactor is in nominal power of 1 MW and 2 MW.


Author(s):  
Soo-sung Kim ◽  
Yong-jin Jeong ◽  
Jong-man Park ◽  
Yoon-sang Lee

This study was carried out to establish an electron beam welding process for nuclear plate-type fuel assembly fabrication. A preliminary investigation for plate fuel fabrication was conducted with a consideration of the weld performance using AA6061-T6 aluminum alloy made through the EBW (Electron Beam Welding) process. The optimum welding parameters for the plate-type fuel assembly were obtained in terms of the accelerating voltage, beam current and welding time. The welds made by the optimum parameters showed slightly lower tensile strengths than those of the un-welded specimens. The integrity of the welds by the EBW process was confirmed by the results of the tensile test, an examination of the macro-cross sections and the fracture surfaces of the welded specimens.


Sign in / Sign up

Export Citation Format

Share Document