scholarly journals CORE DESIGN STUDY FOR A SMALL MODULAR BOILING WATER REACTOR

2021 ◽  
Vol 247 ◽  
pp. 19001
Author(s):  
Andhika Feri Wibisono ◽  
Eugene Shwageraus

The hybrid Small Modular Boiling Water Reactor (SMBWR) is a new conceptual design of BWR-type SMR. The main features of SMBWR include a natural circulation loop in its coolant recirculation system and external superheaters system integrated into the steam cycle. A full core analysis of SMBWR is performed with the nodal diffusion code PANTHER using homogenised constant libraries generated by WIMS. The study compared a number of core geometry configurations and fuel management schemes to suppress excess reactivity throughout fuel depletion. Three options for SMBWR core aspect ratio using the same power density are investigated with the aim to assess the effect on the neutronic and thermal-hydraulic performance of the SMBWR. It is found that the thin and tall core configuration (192 fuel assemblies and 3.60 m) showed the least favourable performance out of the three options as it has the largest core pressure drop and thus requires taller chimney to develop natural circulation.

Author(s):  
Liao Yi ◽  
Wang Cong ◽  
Chen Lei

Modular boiling water reactor (MBWR) can be considered as a small sized economic simplified boiling water reactor (ESBWR). It has the advantage of easier fabrication, transportation and construction. In this paper, a 65MWe MBWR core was designed with natural circulation, passive safety features, high power density and an 18 months fuel cycle. The MBWR core consists of 104 fuel assemblies with 4.6 w/o U-235, the assemblies were divided into 3 batches based on the depletion level, the batches shuffled at the end of each cycle. The core converged to equilibrium after 8 fuel cycles. A steady-state equilibrium fuel cycle depletion analysis was performed over a 540 day cycle using the HELIOS and PARCS software. The control blades insertion patterns were chosen to minimize axial and radial power peaking and provide uniform burnup throughout the cycle. At the end of the equilibrium cycle, 16% of total control blade worth remained inserted and the average assembly burnup is 21.318 GWd/MTHM. Thermal hydraulic analysis was also performed to insure the core’s safety feature.


1985 ◽  
Vol 58 (4) ◽  
pp. 265-271 ◽  
Author(s):  
A. S. Babykin ◽  
B. F. Balunov ◽  
T. S. Zhivitskaya ◽  
E. L. Smirnov ◽  
V. I. Tisheninova ◽  
...  

1994 ◽  
Vol 107 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Wim H. M. Nissen ◽  
Jaap Van Der Voet ◽  
Jadranko Karuza

2011 ◽  
Vol 38 (10) ◽  
pp. 2227-2237 ◽  
Author(s):  
Vikas Jain ◽  
P.P. Kulkarni ◽  
A.K. Nayak ◽  
P.K. Vijayan ◽  
D. Saha ◽  
...  

Author(s):  
Shengyao Jiang ◽  
Xingtuan Yang ◽  
Youjie Zhang

The experiments were performed on the test loop HRTL-5, which simulates geometry and system design of the 5-MW Nuclear Heating Reactor developed by the Institute of Nuclear Energy Technology, Tsinghua University. Because of the difference of the geometry design and operating conditions between the heating reactor and the boiling water reactor, the flow behavior presents great differences too, some of which haven’t been deeply studied so far. Results show that in heating reactor, sub-cooled boiling, condensation and flashing play an important role on the flow instabilities of the natural circulation system. Correspondingly, geysering instability, flashing instability, and flow excursion are the very typical instabilities occurring in the primary loop of HRTL-5, which are different from those in boiling water reactor conditions. The compressibility of the steam space on the top of the primary loop has also great influence on the instability of the natural circulation system.


1990 ◽  
Vol 92 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Hideo Nagasaka ◽  
Takashi Sato ◽  
Hirohide Oikawa ◽  
Ryoichi Hamazaki ◽  
Kenji Arai ◽  
...  

Author(s):  
Yuichi Koide ◽  
Yoshihiro Goto ◽  
Yuki Sato ◽  
Shohei Onitsuka ◽  
Hirokuni Ishigaki

The purpose of this study is to develop a seismic analysis model of a group of fuel assemblies in a boiling water reactor and to confirm the validity of the developed model. Each fuel assembly was modeled as a beam on the basis of the finite element method. The mass matrix of the model includes an added mass matrix, which represents the coupled inertia effect caused by the coolant water, in order to simulate the coupled vibration of fuel assemblies. The added mass matrix was obtained by calculating the coefficient matrix of the acceleration vector and fluid force vector under the condition that each fuel assembly moves at unit acceleration. The validity of the model was confirmed by comparing the calculated results with experimental ones. The compared specimens for the experiments were full-scale mock-ups. The vibration characteristics of fuel assemblies in each case of 4 bodies and 368 bodies were compared. As a result of the comparison, the calculations of the frequency response were in agreement with the experimental results. Particularly, the calculation results on the resonance frequency were in good agreement, with an error of less than 2 percent, with the experimental ones. Furthermore, the calculated vibration characteristics of 368 fuel assemblies in the case of an earthquake, such as the excited vibration mode and phase characteristics, were in agreement with the experimental ones. We concluded that the developed model of fuel assemblies was applicable to seismic analysis of a boiling water core.


Sign in / Sign up

Export Citation Format

Share Document