scholarly journals Experimental study of ISHTAR thermostatic irradiation device for the MARIA research reactor

2021 ◽  
Vol 253 ◽  
pp. 04001
Author(s):  
Maciej Lipka ◽  
Anna Talarowska ◽  
Grzegorz Wojtania ◽  
Marek Migdal

Materials and core components for the next generation power reactors technologies require testing that can be performed in existing research reactors. Such experiments employ devices dedicated to reflect the relevant thermal and neutron parameters simulating conditions present in, for example, but not limited to, HTGR reactors. A novel thermostatic irradiation device named ISHTAR (Irradiation System for High-Temperature Reactors) has been designed and constructed in the MARIA research reactor. Its mission is to enable irradiation of samples in controlled, homogeneous temperature field reaching 1000°C and inert gas atmosphere. The high temperature is achieved by a combination of electric and gamma heating, together with carefully designed thermal insulation. Additionally, samples holder made of graphite with high thermal conductivity enables the temperature homogenization in all directions. Device will be placed inside the Beryllium matrix of MARIA core and cooled with forced circulation of water from the reactor pool loop. This paper presents the outcome of experiments conducted with the rig prototype in external hydraulic mock-up of the MARIA reactor irradiation channel. The results have proved that the desired conditions for irradiation of the samples were achieved and their comparison against computational data has shown the adequacy of the design process. Finally, the loss of flow scenario was tested in protected and unprotected conditions (meaning with and without the safety system based on temperature feedback), proving the operational safety of the ISHTAR design. Experimental results will be used in the future to validate the numerical models (two and three dimensional) of the irradiation rig, providing an improved understanding of free convection and radiation phenomena modeling.

2018 ◽  
Vol 60 (7-8) ◽  
pp. 772-776 ◽  
Author(s):  
Jiayi Liu ◽  
Junmeng Zhou ◽  
Yu Wang ◽  
Jie Mei ◽  
Jialin Liu

Nanoscale ◽  
2021 ◽  
Author(s):  
Pei Liu ◽  
Ece Arslan Imran ◽  
Annick De Backer ◽  
Annelies de Wael ◽  
Ivan Lobato ◽  
...  

Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well...


2021 ◽  
Vol 11 (12) ◽  
pp. 5638
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Hasan Guzel ◽  
Kaan Dal ◽  
Ada Yilmaz ◽  
...  

Dam-break flood waves represent a severe threat to people and properties located in downstream regions. Although dam failure has been among the main subjects investigated in academia, little effort has been made toward investigating wave propagation under the influence of tailwater depth. This work presents three-dimensional (3D) numerical simulations of laboratory experiments of dam-breaks with tailwater performed at the Laboratory of Hydraulics of Iskenderun Technical University, Turkey. The dam-break wave was generated by the instantaneous removal of a sluice gate positioned at the center of a transversal wall forming the reservoir. Specifically, in order to understand the influence of tailwater level on wave propagation, three tests were conducted under the conditions of dry and wet downstream bottom with two different tailwater depths, respectively. The present research analyzes the propagation of the positive and negative wave originated by the dam-break, as well as the wave reflection against the channel’s downstream closed boundary. Digital image processing was used to track water surface patterns, and ultrasonic sensors were positioned at five different locations along the channel in order to obtain water stage hydrographs. Laboratory measurements were compared against the numerical results obtained through FLOW-3D commercial software, solving the 3D Reynolds-Averaged Navier–Stokes (RANS) with the k-ε turbulence model for closure, and Shallow Water Equations (SWEs). The comparison achieved a reasonable agreement with both numerical models, although the RANS showed in general, as expected, a better performance.


2017 ◽  
Vol 58 ◽  
pp. 6.1-6.36 ◽  
Author(s):  
I. Gultepe ◽  
A. J. Heymsfield ◽  
P. R. Field ◽  
D. Axisa

AbstractIce-phase precipitation occurs at Earth’s surface and may include various types of pristine crystals, rimed crystals, freezing droplets, secondary crystals, aggregates, graupel, hail, or combinations of any of these. Formation of ice-phase precipitation is directly related to environmental and cloud meteorological parameters that include available moisture, temperature, and three-dimensional wind speed and turbulence, as well as processes related to nucleation, cooling rate, and microphysics. Cloud microphysical parameters in the numerical models are resolved based on various processes such as nucleation, mixing, collision and coalescence, accretion, riming, secondary ice particle generation, turbulence, and cooling processes. These processes are usually parameterized based on assumed particle size distributions and ice crystal microphysical parameters such as mass, size, and number and mass density. Microphysical algorithms in the numerical models are developed based on their need for applications. Observations of ice-phase precipitation are performed using in situ and remote sensing platforms, including radars and satellite-based systems. Because of the low density of snow particles with small ice water content, their measurements and predictions at the surface can include large uncertainties. Wind and turbulence affecting collection efficiency of the sensors, calibration issues, and sensitivity of ground-based in situ observations of snow are important challenges to assessing the snow precipitation. This chapter’s goals are to provide an overview for accurately measuring and predicting ice-phase precipitation. The processes within and below cloud that affect falling snow, as well as the known sources of error that affect understanding and prediction of these processes, are discussed.


2013 ◽  
Vol 8 (S300) ◽  
pp. 147-150 ◽  
Author(s):  
Donald Schmit ◽  
Sarah Gibson

AbstractThere are currently no three dimensional numerical models which describe the magnetic and energetic formation of prominences self-consistently. Consequently, there has not been significant progress made in understanding the connection between the dense prominence plasma and the coronal cavity. We have taken an ad-hoc approach to understanding the energetic implications of the magnetic models of prominence structure. We extract one dimensional magnetic field lines from a 3D MHD model of a flux rope and solve for hydrostatic balance along these field lines incorporating field-aligned thermal conduction, uniform heating, and radiative losses. The 1D hydrostatic solutions for density and temperature are then mapped back into three dimensional space, which allows us to consider the projection of multiple structures. We find that the 3D flux rope is composed of several distinct field line types. A majority of the flux rope interior field lines are twisted but not dipped. These field lines are density-reduced relative to unsheared arcade field lines. We suggest the cavity may form along these short interior field lines which are surrounded by a sheath of dipped field lines. This geometric arrangement would create a cavity on top of a prominence, but the two structures would not share field lines or plasma.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


1995 ◽  
Vol 06 (02) ◽  
pp. 317-373 ◽  
Author(s):  
G. GILDENBLAT ◽  
D. FOTY

We review the modeling of silicon MOS devices in the 10–300 K temperature range with an emphasis on the specifics of low-temperature operation. Recently developed one-dimensional models of long-channel transistors are discussed in connection with experimental determination and verification of the effective channel mobility in a wide temperature range. We also present analytical pseudo-two-dimensional models of short-channel devices which have been proposed for potential use in circuit simulators. Several one-, two-, and three-dimensional numerical models are discussed in order to gain insight into the more subtle details of the low-temperature device physics of MOS transistors and capacitors. Particular attention is paid to freezeout effects which, depending on the device design and the ambient temperature range, may or may not be important for actual device operation. The numerical models are applied to study the characteristic time scale of freezeout transients in the space-charge regions of silicon devices, to the analysis and suppression of delayed turn-off in MOS transistors with compensated channel, and to the temperature dependence of three-dimensional effects in short-channel, narrow-channel MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document