scholarly journals Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data

2018 ◽  
Vol 4 ◽  
pp. 6 ◽  
Author(s):  
Dimitri A. Rochman ◽  
Alexander Vasiliev ◽  
Abdelhamid Dokhane ◽  
Hakim Ferroukhi

This paper presents a study of the impact of the nuclear data (cross sections, neutron emission and spectra) on different quantities for spent nuclear fuels (SNF) from Swiss power plants: activities, decay heat, neutron and gamma sources and isotopic vectors. Realistic irradiation histories are considered using validated core follow-up models based on CASMO and SIMULATE. Two Pressurized and one Boiling Water Reactors (PWR and BWR) are considered over a large number of operated cycles. All the assemblies at the end of the cycles are studied, being reloaded or finally discharged, allowing spanning over a large range of exposure (from 4 to 60 MWd/kgU for ≃9200 assembly-cycles). Both UO2 and MOX fuels were used during the reactor cycles, with enrichments from 1.9 to 4.7% for the UO2 and 2.2 to 5.8% Pu for the MOX. The SNF characteristics presented in this paper are calculated with the SNF code. The calculated uncertainties, based on the ENDF/B-VII.1 library are obtained using a simple Monte Carlo sampling method. It is demonstrated that the impact of nuclear data is relatively important (e.g. up to 17% for the decay heat), showing the necessity to consider them for safety analysis of the SNF handling and disposal.

2013 ◽  
Vol 10 (2) ◽  
pp. 6-10 ◽  
Author(s):  
Petr Pospíšil

Abstract Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive waterjet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Mechanical cutting has been used by Westinghouse since 1999 for both Pressurized Water Reactors (PWR’s) and Boiling Water Reactors (BWR’s) and its process has been continuously improved over the years. The complexity of the work requires well designed and reliable tools. Different band saws, disc saws, tube cutters and shearing tools have been developed to cut the reactor internals. All of those equipments are hydraulically driven which is very suitable for submerged applications. Westinghouse experience in mechanical cutting has demonstrated that it is an excellent technique for segmentation of internals. In summary, the purpose of this paper will be to provide an overview of the Westinghouse mechanical segmentation process, based on actual experience from the work that has been completed to date.


2020 ◽  
Vol 239 ◽  
pp. 19005
Author(s):  
Zhang Wenxin ◽  
Qiang shenglong ◽  
Yin qiang ◽  
Cui Xiantao

Neutron cross section data is the basis of nuclear reactor physical calculation and has a decisive influence on the accuracy of calculation results. AFA3Gassemble is widely used in nuclear power plants. CENACE is an ACE format multiple-temperature continuous energy cross section library that developed by China Nuclear Data Centre. In this paper, we calculated the AFA3G assemble by RMC.We respectively used ENDF6.8/, ENDF/7 and CENACE data for calculation. The impact of nuclear data on RMC calculation is studied by comparing the results of different nuclear data.


2018 ◽  
Vol 4 ◽  
pp. 10 ◽  
Author(s):  
Guillaume Ritter ◽  
Romain Eschbach ◽  
Richard Girieud ◽  
Maxime Soulard

CESAR stands in French for “simplified depletion applied to reprocessing”. The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ∼400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture, CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with “industrial nuclear” constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR’s). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA − Cadarache.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Laurence Luneville ◽  
David Simeone ◽  
Gianguido Baldinozzi ◽  
Dominique Gosset ◽  
yves serruys

AbstractEven if the Binary Collision Approximation does not take into account relaxation processes at the end of the displacement cascade, the amount of displaced atoms calculated within this framework can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and ion beam facilities on a defined material. In this paper, a formalism is presented to evaluate the displacement cross-sections pointing out the effect of the anisotropy of nuclear reactions. From this formalism, the impact of fast neutrons (with a kinetic energy En superior to 1 MeV) is accurately described. This point allows calculating accurately the displacement per atom rates as well as primary and weighted recoil spectra. Such spectra provide useful information to select masses and energies of ions to perform realistic experiments in ion beam facilities.


2018 ◽  
Vol 4 ◽  
pp. 14 ◽  
Author(s):  
James Dyrda ◽  
Ian Hill ◽  
Luca Fiorito ◽  
Oscar Cabellos ◽  
Nicolas Soppera

Uncertainty propagation to keff using a Total Monte Carlo sampling process is commonly used to solve the issues associated with non-linear dependencies and non-Gaussian nuclear parameter distributions. We suggest that in general, keff sensitivities to nuclear data perturbations are not problematic, and that they remain linear over a large range; the same cannot be said definitively for nuclear data parameters and their impact on final cross-sections and distributions. Instead of running hundreds or thousands of neutronics calculations, we therefore investigate the possibility to take those many cross-section file samples and perform ‘cheap’ sensitivity perturbation calculations. This is efficiently possible with the NEA Nuclear Data Sensitivity Tool (NDaST) and this process we name the half Monte Carlo method (HMM). We demonstrate that this is indeed possible with a test example of JEZEBEL (PMF001) drawn from the ICSBEP handbook, comparing keff directly calculated with SERPENT to those predicted with NDaST. Furthermore, we show that one may retain the normal NDaST benefits; a deeper analysis of the resultant effects in terms of reaction and energy breakdown, without the normal computational burden of Monte Carlo (results within minutes, rather than days). Finally, we assess the rationality of using either full or HMMs, by also using the covariance data to do simple linear 'sandwich formula' type propagation of uncertainty onto the selected benchmarks. This allows us to draw some broad conclusions about the relative merits of selecting a technique with either full, half or zero degree of Monte Carlo simulation


2021 ◽  
pp. 29-37
Author(s):  
T. K. KSENOFONTOVA ◽  

One of the most common types of hydraulic structures is reinforced concrete pipelines used in various areas of water management. They are used in water supply and disposal systems as supply and discharge pipelines of hydroelectric power plants and pumping stations, in the system of land reclamation. Due to the prevalence of these structures and their large lengths, design issues play an important role. Currently, when calculating reinforced concrete pipelines, both monolithic and prefabricated, the pipe ring of a single width is considered as a linear-elastic body under the conditions of a plane-deformed state. At the same time, it is considered that reinforced concrete pipelines have a sufficiently high rigidity, so the impact of soil resistance due to their deformation is very small and it is not taken into account when designing. In addition,in reinforced concrete, from which pipes are made, even at low loads, nonlinear deformations occur associated with the development of its creep. Non-linear operation of reinforced concrete also occurs in the case of cracks in the pipeline shell, and in its most stressed zones cracks may be formed and stresses may appear in the reinforcement. These factors lead to a change in the rigidity of the cross sections of the pipeline shell and redistribution. The article considers how the presence of expanded joints affects the stress state of the underground pipeline shell,how justified is the assumption that the ground resistance has a small effect on the operation of the prefabricated water supply pipeline, and also there is examines the influence of the physical nonlinearity of reinforced concrete on the results of its calculation in the spatial setting.I


2019 ◽  
Vol 211 ◽  
pp. 07004
Author(s):  
J. Huyghe ◽  
C. De Saint-Jean ◽  
D. Lecarpentier ◽  
C. Reynard-Carette ◽  
C. Vaglio-Gaudard ◽  
...  

Nuclear decay heat is a crucial issue for PWR in-core safety after reactor shutdown and back-end cycle. It is a dimensioning parameter for safety injection systems (SIS) to avoid a dewatering of the reactor core. The decay heat uncertainty needs to be controlled over the largest range of applications. The assimilation of the MERCI-1 experiment was studied to provide feedbacks on nuclear data. This experiment consisted in the measurement of the decay heat of a PWR UOX fuel sample irradiated in the OSIRIS reactor, for cooling times between 45 minutes and 42 days. More specifically, the consideration of several experimental values of MERCI-1 at different cooling times was tested. This raised issues about correlations to consider between different measurements. Besides, the impact of considering correlations between independent fission yields in covariance matrices on the decay heat uncertainty calculation and on the feedbacks on nuclear data is discussed.


2020 ◽  
Vol 239 ◽  
pp. 22008
Author(s):  
Eliot Party ◽  
Xavier Doligez ◽  
Philippe Dessagne ◽  
Maëlle Kerveno ◽  
Greg Henning

This paper shows how Total Monte Carlo (TMC) method and Perturbation Theory (PT) can be applied to quantify uncertainty due to nuclear data on reactor static calculations of integral parameters such as keff and βeff. This work focuses on thorium fueled reactors and it aims to rank different cross sections uncertainty regarding criticality calculations. The consistency of the two methods are first studied. The cross sections set used for the TMC method is computed to build adequate correlation matrices. Those matrices are then multiplied by the sensitivity coefficients obtained thanks to the PT to obtain global uncertainties that are compared to the ones calculated by the TMC method. Results in good agreement allow us to use correlation matrix from the state of the art nuclear data library (JEFF 3-3) that provide insight of uncertainty on keff and βeff for thorium fueled Pressurized Water Reactors. Finally, maximum uncertainties on cross sections are estimated to reach a target uncertainty on integral parameters. It is shown that a strong reduction of the current uncertainty is needed and consequently, new measurements and evaluations have to be performed.


Sign in / Sign up

Export Citation Format

Share Document