scholarly journals Guidance and navigation for rendezvous with an uncooperative target

Author(s):  
J. Telaar ◽  
C. Schlaile ◽  
J. Sommer

This paper presents a guidance strategy for a rendezvous with an uncooperative target. In the applied design reference mission, a spiral approach is commanded ensuring a collision-free relative orbit due to e/i-vector separation. The dimensions of the relative orbit are successively reduced by Δv commands which at the same time improve the observability of the relative state. The navigation is based on line-of-sight measurements. The relative state is estimated by an extended Kalman filter (EKF). The performance of this guidance and navigation strategy is demonstrated by extensive Monte Carlo simulations taking into account all major uncertainties like measurement errors, Δv execution errors, and differential drag.

Author(s):  
W.J. de Ruijter ◽  
Sharma Renu

Established methods for measurement of lattice spacings and angles of crystalline materials include x-ray diffraction, microdiffraction and HREM imaging. Structural information from HREM images is normally obtained off-line with the traveling table microscope or by the optical diffractogram technique. We present a new method for precise measurement of lattice vectors from HREM images using an on-line computer connected to the electron microscope. It has already been established that an image of crystalline material can be represented by a finite number of sinusoids. The amplitude and the phase of these sinusoids are affected by the microscope transfer characteristics, which are strongly influenced by the settings of defocus, astigmatism and beam alignment. However, the frequency of each sinusoid is solely a function of overall magnification and periodicities present in the specimen. After proper calibration of the overall magnification, lattice vectors can be measured unambiguously from HREM images.Measurement of lattice vectors is a statistical parameter estimation problem which is similar to amplitude, phase and frequency estimation of sinusoids in 1-dimensional signals as encountered, for example, in radar, sonar and telecommunications. It is important to properly model the observations, the systematic errors and the non-systematic errors. The observations are modelled as a sum of (2-dimensional) sinusoids. In the present study the components of the frequency vector of the sinusoids are the only parameters of interest. Non-systematic errors in recorded electron images are described as white Gaussian noise. The most important systematic error is geometric distortion. Lattice vectors are measured using a two step procedure. First a coarse search is obtained using a Fast Fourier Transform on an image section of interest. Prior to Fourier transformation the image section is multiplied with a window, which gradually falls off to zero at the edges. The user indicates interactively the periodicities of interest by selecting spots in the digital diffractogram. A fine search for each selected frequency is implemented using a bilinear interpolation, which is dependent on the window function. It is possible to refine the estimation even further using a non-linear least squares estimation. The first two steps provide the proper starting values for the numerical minimization (e.g. Gauss-Newton). This third step increases the precision with 30% to the highest theoretically attainable (Cramer and Rao Lower Bound). In the present studies we use a Gatan 622 TV camera attached to the JEM 4000EX electron microscope. Image analysis is implemented on a Micro VAX II computer equipped with a powerful array processor and real time image processing hardware. The typical precision, as defined by the standard deviation of the distribution of measurement errors, is found to be <0.003Å measured on single crystal silicon and <0.02Å measured on small (10-30Å) specimen areas. These values are ×10 times larger than predicted by theory. Furthermore, the measured precision is observed to be independent on signal-to-noise ratio (determined by the number of averaged TV frames). Obviously, the precision is restricted by geometric distortion mainly caused by the TV camera. For this reason, we are replacing the Gatan 622 TV camera with a modern high-grade CCD-based camera system. Such a system not only has negligible geometric distortion, but also high dynamic range (>10,000) and high resolution (1024x1024 pixels). The geometric distortion of the projector lenses can be measured, and corrected through re-sampling of the digitized image.


2017 ◽  
Vol 89 (1-2) ◽  
pp. 139-153 ◽  
Author(s):  
Venanzio Cichella ◽  
Thiago Marinho ◽  
Dušan Stipanović ◽  
Naira Hovakimyan ◽  
Isaac Kaminer ◽  
...  

Radio Science ◽  
2007 ◽  
Vol 42 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
L. Ram Gopal Reddy ◽  
B. M. Reddy

2018 ◽  
Vol 47 (9) ◽  
pp. 918005
Author(s):  
李杏华 Li Xinghua ◽  
张 冬 Zhang Dong ◽  
高凌妤 Gao Lingyu ◽  
郭倩蕊 Guo Qianrui ◽  
景 泉 Jing Quan ◽  
...  
Keyword(s):  

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 637
Author(s):  
Alexandra Hofer ◽  
Paul Kroll ◽  
Matthias Barmettler ◽  
Christoph Herwig

Timely monitoring and control of critical process parameters and product attributes are still the basic tasks in bioprocess development. The current trend of automation and digitization in bioprocess technology targets an improvement of these tasks by reducing human error and increasing through-put. The gaps in such automation procedures are still the sampling procedure, sample preparation, sample transfer to analyzers, and the alignment of process and sample data. In this study, an automated sampling system and the respective data management software were evaluated for system performance; applicability with HPLC for measurement of vitamins, product and amino acids; and applicability with a biochemical analyzer. The focus was especially directed towards the adaptation and assessment of an appropriate amino acid method, as these substances are critical in cell culture processes. Application of automated sampling in a CHO fed-batch revealed its potential with regard to data evaluation. The higher sampling frequency compared to manual sampling increases the generated information content, which allows easier interpretation of the metabolism, extraction of e.g., ks values, application of smoothing algorithms, and more accurate detection of process events. A comparison with sensor technology shows the advantages and disadvantages in terms of measurement errors and measurement frequency.


2009 ◽  
Vol 63 (8) ◽  
pp. 865-872 ◽  
Author(s):  
Wangbao Yin ◽  
Lei Zhang ◽  
Lei Dong ◽  
Weiguang Ma ◽  
Suotang Jia

It is vitally important for a power plant to determine the chemical composition of coal prior to combustion in order to obtain optimal boiler control. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) system comprising a LIBS apparatus and sampling equipment has been designed for possible application to power plants for on-line quality analysis of pulverized coal. Special attention was given to the LIBS system, the data processing methods (especially the normalization with Bode Rule/DC Level) and the specific settings (the software-controlled triggering source, high-pressure gas cleaning device, sample-preparation module, sampling module, etc.), which gave the best direct measurement for C, H, Si, Na, Mg, Fe, Al, and Ti with measurement errors less than 10% for pulverized coal. Therefore, the apparatus is accurate enough to be applied to industries for on-line monitoring of pulverized coal. The method of proximate analysis was also introduced and the experimental error of Aad (Ash, ‘ad’ is an abbreviation for ‘air dried’) was shown in the range of 2.29 to 13.47%. The programmable logic controller (PLC) controlled on-line coal sampling equipment, which is designed based upon aerodynamics, and is capable of performing multipoint sampling and sample-preparation operation.


2016 ◽  
Vol 122 (1) ◽  
Author(s):  
Guangle Zhang ◽  
Jianguo Liu ◽  
Zhenyu Xu ◽  
Yabai He ◽  
Ruifeng Kan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document