scholarly journals Molecular characterization and genetic relationships among most common identified morphotypes of critically endangered rare Moroccan species Argania spinosa (Sapotaceae) using RAPD and SSR markers

2008 ◽  
Vol 65 (8) ◽  
pp. 805-805 ◽  
Author(s):  
Khalid Majourhat ◽  
Youssef Jabbar ◽  
Abdellatif Hafidi ◽  
Pedro Martínez-Gómez
Biologia ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 799-808
Author(s):  
Samira Bnikkou ◽  
Abdellatif Laknifli ◽  
Khalid Majourhat ◽  
Sara Jalili ◽  
José Antonio Hernandez ◽  
...  

2020 ◽  
Author(s):  
Koray Ozrenk ◽  
Gursel Ozkan ◽  
Meleksen Akin ◽  
Emine Orhan ◽  
Sadiye Peral Eyduran ◽  
...  

Genetika ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 693-704
Author(s):  
Hasan Pinar ◽  
Ercan Yildiz ◽  
Mustafa Kaplankiran ◽  
Celil Toplu ◽  
Mustafa Unlu ◽  
...  

In this study, SRAP and SSR markers were employed to determine genetic relationships among 42 persimmon genotypes (Diospyros kaki Thunb) obtained from Hatay province and 3 persimmon cultivars, 2 of which belong to Diospyros kaki Thunb and one belongs to Diospyros oleifera Cheng. Genetic relationships were determined by using a total of 29 molecular DNA primers (SRAP and SSR). Of these primers, 21 SRAP primer combinations produced a total of 107 bands and 77.6% of them were polymorphic; 8 SSR primers produced 26 polymorphic bands with an average polymorphism ratio of 84.6%. The SRAP and SSR markers produced 4.6 bands as average and the number of bands produced per marker was calculated as 3.6. The lowest similarity was observed between MK-113 (Diospyros oleifera Cheng) and the other genotypes all belongs to Diospyros kaki Thunb (with similarity ratios of 0.41-0.69 for SRAP primers, between 0.25-0.67 for SSR primers). The genotypes/cultivars belongs to Diospyros kaki had similarity ratio between 0.98-1.00 according to SRAP and SSR markers. This synonym or similarity could be results of clonal propagation rather than autogamy.


2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


Author(s):  
S. P. Jeevan Kumar ◽  
C. Susmita ◽  
K. V. Sripathy ◽  
Dinesh K. Agarwal ◽  
Govind Pal ◽  
...  

Abstract Background The genetic base of soybean cultivars in India has been reported to be extremely narrow, due to repeated use of few selected and elite genotypes as parents in the breeding programmes. This ultimately led to the reduction of genetic variability among existing soybean cultivars and stagnation in crop yield. Thus in order to enhance production and productivity of soybean, broadening of genetic base and exploring untapped valuable genetic diversity has become quite indispensable. This could be successfully accomplished through molecular characterization of soybean genotypes using various DNA based markers. Hence, an attempt was made to study the molecular divergence and relatedness among 29 genotypes of soybean using SSR markers. Methods and results A total of 35 SSR primers were deployed to study the genetic divergence among 29 genotypes of soybean. Among them, 14 primer pairs were found to be polymorphic producing a total of 34 polymorphic alleles; and the allele number for each locus ranged from two to four with an average of 2.43 alleles per primer pair. Polymorphic information content (PIC) values of SSRs ranged from 0.064 to 0.689 with an average of 0.331. The dendrogram constructed based on dissimilarity indices clustered the 29 genotypes into two major groups and four sub-groups. Similarly, principal coordinate analysis grouped the genotypes into four major groups that exactly corresponded to the clustering of genotypes among four sub-groups of dendrogram. Besides, the study has reported eight unique and two rare alleles that could be potentially utilized for genetic purity analysis and cultivar identification in soybean. Conclusion In the present investigation, two major clusters were reported and grouping of large number of genotypes in each cluster indicated high degree of genetic resemblance and narrow genetic base among the genotypes used in the study. With respect to the primers used in the study, the values of PIC and other related parameters revealed that the selected SSR markers are moderately informative and could be potentially utilized for diversity analysis of soybean. The clustering pattern of dendrogram constructed based on SSR loci profile displayed good agreement with the cultivar’s pedigree information. High level of genetic similarity observed among the genotypes from the present study necessitates the inclusion of wild relatives, land races and traditional cultivars in future soybean breeding programmes to widen the crop gene pool. Thus, hybridization among diverse gene pool could result in more heterotic combinations ultimately enhancing genetic gain, crop yield and resistance to various stress factors.


2021 ◽  
pp. 36-48
Author(s):  
Farhana Afrin Vabna ◽  
Mohammad Zahidul Islam ◽  
Md. Ferdous Rezwan Khan Prince ◽  
Md. Ekramul Hoque

Aims: The aim of the study was to determine the genetic diversity of twenty four Boro rice landraces using rice genome specific twelve well known SSR markers. Study Design: Genomic DNA extraction, PCR amplification, Polyacrylamide gel electrophoresis (PAGE) and data analysis-these steps were followed to perform the research work. Data was analysed with the help of following software; POWERMAKER version 3.25, AlphaEaseFC (Alpha Innotech Corporation) version 4.0. UPGMA dendrogram was constructed using MEGA 5.1 software. Place and Duration of Study: The study was conducted at the Genetic Resources and Seed Division (GRSD), Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur, Bangladesh during the period of November 2017 to March 2018. Methodology: Simple Sequence Repeat (SSR) markers were used to assay 24 landraces of Boro rice collected from the Gene Bank of Bangladesh Rice Research Institute (BRRI). Results: A total fifty four (54) alleles were detected, out of which forty five (45) polymorphic alleles were identified. The Polymorphic Information Content (PIC) of SSR markers ranged from 0.08 (RM447) to 0.84 (RM206) with an average value of PIC = 0.49. Gene diversity ranges from 0.08 (RM447) to 0.86 (RM206) with an average value of 0.52. The RM206 marker can be considered as the best marker among the studied markers for 24 rice landraces. Dendrogram based on Nei’s genetic distance using Unweighted Pair Group Method of Arithmetic Mean (UPGMA) indicated the segregation of 24 genotypes into three main clusters. Conclusion: The result revealed that SSR markers are very effective tools in the study of genetic diversity and genetic relationships and this result can be conveniently used for further molecular diversity analysis of rice genotypes to identify diverse parent for the development of high yielding variety in rice.


2017 ◽  
Vol 41 ◽  
pp. 338-346 ◽  
Author(s):  
Mohammad NISAR ◽  
Asaf KHAN ◽  
Syed Fazal WADOOD ◽  
Aftab Ali SHAH ◽  
Fatih HANCI

Sign in / Sign up

Export Citation Format

Share Document