scholarly journals Multi-objective optimization of earth cooperative observation hybrid satellite constellation

Author(s):  
Boyong He ◽  
Jing Cao ◽  
Qingrui Zhou ◽  
Jianguo Wang

As the demand for comprehensiveness, accuracy, and data fast return of satellite remote sensing information grows, a hybrid constellation with permanent inter-satellite link becomes an inevitable choice for earth cooperative observation. The models for the objective function for global coverage, regional revisit detained survey duration, spatial resolution, inter-satellite links, and the cost of constellation deployment are established firstly, and the constraints like the ground trace repeating are dealt skillfully. The layered multi-objective optimization frame is designed for solving this problem. The example explains that present models distribute the multiple objective functions and constraints, and the result Pareto solution set can show several performance features of the hybrid satellite constellation, it may support the satellite constellation engineering argumentation and selection on merit.

2021 ◽  
Author(s):  
You Junyu ◽  
Ampomah William ◽  
Sun Qian

Abstract This paper will present a robust workflow to address multi-objective optimization (MOO) of CO2-EOR-sequestration projects with a large number of operational control parameters. Farnsworth Unit (FWU) field, a mature oil reservoir undergoing CO2 alternating water injection (CO2-WAG) enhanced oil recovery (EOR), will be used as a field case to validate the proposed optimization protocol. The expected outcome of this work would be a repository of Pareto-optimal solutions of multiple objective functions, including oil recovery, carbon storage volume, and project economics. FWU's numerical model is employed to demonstrate the proposed optimization workflow. Since using MOO requires computationally intensive procedures, machine-learning-based proxies are introduced to substitute for the high-fidelity model, thus reducing the total computation overhead. The vector machine regression combined with the Gaussian kernel (Gaussian -SVR) is utilized to construct proxies. An iterative self-adjusting process prepares the training knowledgebase to develop robust proxies and minimizes computational time. The proxies’ hyperparameters will be optimally designed using Bayesian Optimization to achieve better generalization performance. Trained proxies will be coupled with Multi-objective Particle Swarm Optimization (MOPSO) protocol to construct the Pareto-front solution repository. The outcomes of this workflow will be a repository containing Pareto-optimal solutions of multiple objectives considered in the CO2-WAG project. The proposed optimization workflow will be compared with another established methodology employing a multi-layer neural network to validate its feasibility in handling MOO with a large number of parameters to control. Optimization parameters used include operational variables that might be used to control the CO2-WAG process, such as the duration of the water/gas injection period, producer bottomhole pressure (BHP) control, and water injection rate of each well included in the numerical model. It is proven that the workflow coupling Gaussian -SVR proxies and the iterative self-adjusting protocol is more computationally efficient. The MOO process is made more rapid by squeezing the size of the required training knowledgebase while maintaining the high accuracy of the optimized results. The outcomes of the optimization study show promising results in successfully establishing the solution repository considering multiple objective functions. Results are also verified by validating the Pareto fronts with simulation results using obtained optimized control parameters. The outcome from this work could provide field operators an opportunity to design a CO2-WAG project using as many inputs as possible from the reservoir models. The proposed work introduces a novel concept that couples Gaussian -SVR proxies with a self-adjusting protocol to increase the computational efficiency of the proposed workflow and to guarantee the high accuracy of the obtained optimized results. More importantly, the workflow can optimize a large number of control parameters used in a complex CO2-WAG process, which greatly extends its utility in solving large-scale multi-objective optimization problems in various projects with similar desired outcomes.


2018 ◽  
Author(s):  
Ricardo Guedes ◽  
Vasco Furtado ◽  
Tarcísio Pequeno ◽  
Joel Rodrigues

UNSTRUCTURED The article investigates policies for helping emergency-centre authorities for dispatching resources aimed at reducing goals such as response time, the number of unattended calls, the attending of priority calls, and the cost of displacement of vehicles. Pareto Set is shown to be the appropriated way to support the representation of policies of dispatch since it naturally fits the challenges of multi-objective optimization. By means of the concept of Pareto dominance a set with objectives may be ordered in a way that guides the dispatch of resources. Instead of manually trying to identify the best dispatching strategy, a multi-objective evolutionary algorithm coupled with an Emergency Call Simulator uncovers automatically the best approximation of the optimal Pareto Set that would be the responsible for indicating the importance of each objective and consequently the order of attendance of the calls. The scenario of validation is a big metropolis in Brazil using one-year of real data from 911 calls. Comparisons with traditional policies proposed in the literature are done as well as other innovative policies inspired from different domains as computer science and operational research. The results show that strategy of ranking the calls from a Pareto Set discovered by the evolutionary method is a good option because it has the second best (lowest) waiting time, serves almost 100% of priority calls, is the second most economical, and is the second in attendance of calls. That is to say, it is a strategy in which the four dimensions are considered without major impairment to any of them.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 129 ◽  
Author(s):  
Yan Pei ◽  
Jun Yu ◽  
Hideyuki Takagi

We propose a method to accelerate evolutionary multi-objective optimization (EMO) search using an estimated convergence point. Pareto improvement from the last generation to the current generation supports information of promising Pareto solution areas in both an objective space and a parameter space. We use this information to construct a set of moving vectors and estimate a non-dominated Pareto point from these moving vectors. In this work, we attempt to use different methods for constructing moving vectors, and use the convergence point estimated by using the moving vectors to accelerate EMO search. From our evaluation results, we found that the landscape of Pareto improvement has a uni-modal distribution characteristic in an objective space, and has a multi-modal distribution characteristic in a parameter space. Our proposed method can enhance EMO search when the landscape of Pareto improvement has a uni-modal distribution characteristic in a parameter space, and by chance also does that when landscape of Pareto improvement has a multi-modal distribution characteristic in a parameter space. The proposed methods can not only obtain more Pareto solutions compared with the conventional non-dominant sorting genetic algorithm (NSGA)-II algorithm, but can also increase the diversity of Pareto solutions. This indicates that our proposed method can enhance the search capability of EMO in both Pareto dominance and solution diversity. We also found that the method of constructing moving vectors is a primary issue for the success of our proposed method. We analyze and discuss this method with several evaluation metrics and statistical tests. The proposed method has potential to enhance EMO embedding deterministic learning methods in stochastic optimization algorithms.


2021 ◽  
Vol 11 (10) ◽  
pp. 4575
Author(s):  
Eduardo Fernández ◽  
Nelson Rangel-Valdez ◽  
Laura Cruz-Reyes ◽  
Claudia Gomez-Santillan

This paper addresses group multi-objective optimization under a new perspective. For each point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in charge of making the final decision, finding the best compromise between the collective satisfaction and dissatisfaction. Imperfect information on values of objective functions, required and available resources, and decision model parameters are handled by using interval numbers. Two different kinds of multi-criteria decision models are considered: (i) an interval outranking approach and (ii) an interval weighted-sum value function. The proposal is more general than other approaches to group multi-objective optimization since (a) some (even all) objective values may be not the same for different DMs; (b) each group member may consider their own set of objective functions and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on resources availability and requirements may be handled; (e) each group member may have their own perception about the availability of resources and the requirement of resources per activity. An important application of the new approach is collective multi-objective project portfolio optimization. This is illustrated by solving a real size group many-objective project portfolio optimization problem using evolutionary computation tools.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


2013 ◽  
Vol 307 ◽  
pp. 161-165
Author(s):  
Hai Jin ◽  
Jin Fa Xie

A multi-objective genetic algorithm is applied into the layout optimization of tracked self-moving power. The layout optimization mathematical model was set up. Then introduced the basic principles of NSGA-Ⅱ, which is a Pareto multi-objective optimization algorithm. Finally, NSGA-Ⅱwas presented to solve the layout problem. The algorithm was proved to be effective by some practical examples. The results showed that the algorithm can spread toward the whole Pareto front, and provide many reasonable solutions once for all.


2021 ◽  
Author(s):  
Erick A. Barboza ◽  
Carmelo J. A. Bastos-Filho ◽  
Daniel A. R. Chaves ◽  
Joaquim F. Martins-Filho ◽  
Leonardo D. Coelho ◽  
...  

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 133
Author(s):  
Nien-Che Yang ◽  
Danish Mehmood

Harmonic distortion in power systems is a significant problem, and it is thus necessary to mitigate critical harmonics. This study proposes an optimal method for designing passive power filters (PPFs) to suppress these harmonics. The design of a PPF involves multi-objective optimization. A multi-objective bee swarm optimization (MOBSO) with Pareto optimality is implemented, and an external archive is used to store the non-dominated solutions obtained. The minimum Manhattan distance strategy was used to select the most balanced solution in the Pareto solution set. A series of case studies are presented to demonstrate the efficiency and superiority of the proposed method. Therefore, the proposed method has a very promising future not only in filter design but also in solving other multi-objective optimization problems.


Sign in / Sign up

Export Citation Format

Share Document