scholarly journals Numerical simulation of thermoacoustic instability in Rijke tube

Author(s):  
Haozhe Liu ◽  
Hong YAN

The influence of three different states on the thermoacoustic instability characteristics of Rijke tube was compared in order to reseach the influencing factors of thermoacoustic oscillation by using the Rijke tube model with stack as the heat source. The thermoacoustic oscillations are numerically simulated from the start-up to the saturation state, and the effects of the temperature on the dynamic viscosity and the thermal conductivity are compared. The results show gravity has a greater influence than the thermoacoustic oscillation caused by thermal buoyancy, and it is related to the inner balance of the tube after the gravity and the temperature gradient caused by the protrusion and the temperature gradient caused by the reduction of the amplitude dissipation. For the comprehensive comparison of the two variable parameters, it is found that when the viscosity coefficient changes with temperature and the thermal conductivity is a fixed value, both of them decrease by 49.5% with the temperature change rate. This result far exceeds the viscosity coefficient itself influences.

1996 ◽  
Vol 56 (2) ◽  
pp. 285-306 ◽  
Author(s):  
M. S. Ruderman ◽  
E. Verwichte ◽  
R. Erdélyi ◽  
M. Goossens

The stability of the MHD tangential discontinuity is studied in compressible plasmas in the presence of anisotropic viscosity and thermal conductivity. The general dispersion equation is derived, and solutions to this dispersion equation and stability criteria are obtained for the limiting cases of incompressible and cold plasmas. In these two limiting cases the effect of thermal conductivity vanishes, and the solutions are only influenced by viscosity. The stability criteria for viscous plasmas are compared with those for ideal plasmas, where stability is determined by the Kelvin—Helmholtz velocity VKH as a threshold for the difference in the equilibrium velocities. Viscosity turns out to have a destabilizing influence when the viscosity coefficient takes different values at the two sides of the discontinuity. Viscosity lowers the threshold velocity V below the ideal Kelvin—Helmholtz velocity VKH, so that there is a range of velocities between V and VKH where the overstability is of a dissipative nature.


1971 ◽  
Vol 45 (4) ◽  
pp. 759-768 ◽  
Author(s):  
M. M. R. Williams

The effect of a temperature gradient in a gas inclined at an angle to a boundary wall has been investigated. For an infinite half-space of gas it is found that, in addition to the conventional temperature slip problem, the component of the temperature gradient parallel to the wall induces a net mass flow known as thermal creep. We show that the temperature slip and thermal creep effects can be decoupled and treated quite separately.Expressions are obtained for the creep velocity and heat flux, both far from and at the boundary; it is noted that thermal creep tends to reduce the effective thermal conductivity of the medium.


2006 ◽  
Vol 9 (05) ◽  
pp. 530-542 ◽  
Author(s):  
Hadi Nasrabadi ◽  
Kassem Ghorayeb ◽  
Abbas Firoozabadi

Summary We present formulation and numerical solution of two-phase multicomponent diffusion and natural convection in porous media. Thermal diffusion, pressure diffusion, and molecular diffusion are included in the diffusion expression from thermodynamics of irreversible processes. The formulation and the numerical solution are used to perform initialization in a 2D cross section. We use both homogeneous and layered media without and with anisotropy in our calculations. Numerical examples for a binary mixture of C1/C3 and a multicomponent reservoir fluid are presented. Results show a strong effect of natural convection in species distribution. Results also show that there are at least two main rotating cells at steady state: one in the gas cap, and one in the oil column. Introduction Proper initialization is an important aspect of reliable reservoir simulations. The use of the Gibbs segregation condition generally cannot provide reliable initialization in hydrocarbon reservoirs. This is caused, in part, by the effect of thermal diffusion (caused by the geothermal temperature gradient), which cannot be neglected in some cases; thermal diffusion might be the main phenomenon affecting compositional variation in hydrocarbon reservoirs, especially for near-critical gas/condensate reservoirs (Ghorayeb et al. 2003). Generally, temperature increases with increasing burial depth because heat flows from the Earth's interior toward the surface. The temperature profile, or geothermal gradient, is related to the thermal conductivity of a body of rock and the heat flux. Thermal conductivity is not necessarily uniform because it depends on the mineralogical composition of the rock, the porosity, and the presence of water or gas. Therefore, differences in thermal conductivity between adjacent lithologies can result in a horizontal temperature gradient. Horizontal temperature gradients in some offshore fields can be observed because of a constant water temperature (approximately 4°C) in different depths in the seabed floor. The horizontal temperature gradient causes natural convection that might have a significant effect on species distribution (Firoozabadi 1999). The combined effects of diffusion (pressure, thermal, and molecular) and natural convection on compositional variation in multicomponent mixtures in porous media have been investigated for single-phase systems (Riley and Firoozabadi 1998; Ghorayeb and Firoozabadi 2000a).The results from these references show the importance of natural convection, which, in some cases, overrides diffusion and results in a uniform composition. Natural convection also can result in increased horizontal compositional variation, an effect similar to that in a thermogravitational column (Ghorayeb and Firoozabadi 2001; Nasrabadi et al. 2006). The combined effect of convection and diffusion on species separation has been the subject of many experimental studies. Separation in a thermogravitational column with both effects has been measured widely (Schott 1973; Costeseque 1982; El Mataaoui 1986). The thermogravitational column consists of two isothermal vertical plates with different temperatures separated by a narrow space. The space can be either without a porous medium or filled with a porous medium. The thermal diffusion, in a binary mixture, causes one component to segregate to the hot plate and the other to the cold plate. Because of the density gradient caused by temperature and concentration gradients, convection flow occurs and creates a concentration difference between the top and bottom of the column. Analytical and numerical models have been presented to analyze the experimental results (Lorenz and Emery 1959; Jamet et al. 1992; Nasrabadi et al. 2006). The experimental and theoretical studies show that the composition difference between the top and bottom of the column increases with permeability until an optimum permeability is reached. Then, the composition difference declines as permeability increases. The process in a thermogravitational column shows the significance of the convection from a horizontal temperature gradient.


Author(s):  
Fan Gong ◽  
Yong Huang

The objective of this work is to investigate the flame stabilization mechanism and the impact of the operating conditions on the characteristics of the steady, lean premixed flames. It’s well known that the flame base is very important to the existence of a flame, such as the flame after a V-gutter, which is typically used in ramjet and turbojet or turbofan afterburners and laboratory experiments. We performed two-dimensional simulations of turbulent premixed flames anchored downstream of the heat-conducting V-gutters in a confined passage for kerosene-air combustion. The flame bases are symmetrically located in the shear layers of the recirculation zone immediately after the V-gutter’s trailing edge. The effects of equivalence ratio of inlet mixture, inlet temperature, V-gutter’s thermal conductivity and inlet velocity on the flame base movements are investigated. When the equivalence ratio is raised, the flame base moves upstream slightly and the temperature gradient dT/dx near the flame base increases, so the flame base is strengthened. When the inlet temperature is raised, the flame base moves upstream very slightly, and near the flame base dT/dx increases and dT/dy decreases, so the flame base is strengthened. As the V-gutter’s thermal conductivity increases, the flame base moves downstream, and the temperature gradient dT/dx near the flame base decreases, so the flame base is weakened. When the inlet velocity is raised, the flame base moves upstream, and the convection heat loss with inlet mixture increases, so the flame base is weakened.


2011 ◽  
Vol 680 ◽  
pp. 511-533 ◽  
Author(s):  
SATHESH MARIAPPAN ◽  
R. I. SUJITH

An analysis of thermoacoustic instability is performed for a horizontal Rijke tube with an electrical resistance heater as the heat source. The governing equations for this fluid flow become stiff and are difficult to solve by the computational fluid dynamics (CFD) technique, as the Mach number of the steady flow and the thickness of the heat source (compared to the acoustic wavelength) are small. Therefore, an asymptotic analysis is performed in the limit of small Mach number and compact heat source to eliminate the above stiffness problem. The unknown variables are expanded in powers of Mach number. Two systems of governing equations are obtained: one for the acoustic field and the other for the unsteady flow field in the hydrodynamic zone around the heater. In this analysis, the coupling between the acoustic field and the unsteady heat release rate from the heater appears from the asymptotic analysis. Furthermore, a non-trivial additional term, referred to as the global-acceleration term, appears in the momentum equation of the hydrodynamic zone, which has serious consequences for the stability of the system. This term can be interpreted as a pressure gradient applied from the acoustic onto the hydrodynamic zone. The asymptotic stability of the system with the variation of system parameters is presented using the bifurcation diagram. Numerical simulations are performed using the Galerkin technique for the acoustic zone and CFD techniques for the hydrodynamic zone. The results confirm the importance of the global-acceleration term. Bifurcation diagrams obtained from the simulations with and without the above term are different. Acoustic streaming is shown to occur during the limit cycle and its effect on the unsteady heat release rate is discussed.


1990 ◽  
Vol 112 (2) ◽  
pp. 207-211 ◽  
Author(s):  
J. W. Baish

This paper presents a three-dimensional analysis of the temperature field around a pair of countercurrent arteries and veins embedded in an infinite tissue that has an arbitrary temperature gradient along the axes of the vessels. Asymptotic methods are used to show that such vessels are thermally similar to a highly conductive fiber in the same tissue. Expressions are developed for the effective radius and thermal conductivity of the fiber so that it conducts heat at the same rate that the artery and vein together convect heat and so that its local temperature equals the mean temperature of the vessels. This result allows vascular tissue to be viewed as a composite of conductive materials with highly conductive fibers replacing the convective effects of the vasculature. By characterizing the size and thermal conductivity of these fibers, well-established methods from the study of composites may be applied to determine when an effective conductive model is appropriate for the tissue and vasculature as a whole.


1995 ◽  
Vol 09 (09) ◽  
pp. 1113-1122 ◽  
Author(s):  
LIQIU WANG

The symmetry and positive definiteness of thermal conductivity tensor K are used to derive some properties of heat flux functions ɸi (i=0, 1, 2). All ɸi are shown to be real-valued. Both ɸ0 and ɸ2 are found to be positive definite, and ɸ1 is constrained between −(ɸ0 + ɸ2) and (ɸ0 + ɸ2). By assuming heat flux vector q to be a linear function of temperature gradient ∇θ and velocity strain tensor D, ɸi reduce to three coefficients which are independent of D and ∇θ.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 848
Author(s):  
Haibin Geng ◽  
Jian Luo ◽  
Jinglong Li ◽  
Jianjun Gao ◽  
Xin Lin

Molten pool uniformity is a prerequisite for wire and arc additive manufacture to achieve a uniform surface appearance. The thermal boundary is a key indicator to evaluate the thermodynamic state of the molten pool. This paper focuses on thermal analysis through finite element simulation and characterizes the thermal evolution of a molten pool during bottom-up deposition. The peak temperature of the substrate plate increases from 375.7 °C to 623.1 °C when peak current increases from 120 A to 180 A. The temperature gradient decreases from 40 °C/mm to 30 °C/mm. Weld speed increases from 0.15 m/min to 0.25 m/min; the temperature gradient is kept at about 30 °C/mm. Dimensionless thermal conductivity, Ge number, is proposed and defined as the criteria to estimate layer size variation. For Ip = 140 A, the average value of the Ge number is 87.7, and it shows the best numerical stability. Dimensionless thermal conductivity, Ge, is proposed and defined as the criteria to estimate the occurrence of layer size variation. Prolonging heating time and increasing cycle frequency, Ge number shows favorable stability during bottom-up deposition. The experimental results are consistent with analytical conclusions, which proves the validity of the Ge number as an indicator of deposition stability.


1989 ◽  
Vol 202 ◽  
pp. 83-96 ◽  
Author(s):  
C. Nicoli ◽  
P. Pelcé

We develop a simple model in which longitudinal, compressible, unsteady heat transfer between heater and gas is computed in the small-Mach-number limit. This calculation is used to determine the transfer function of the heater, which plays an important role in the stability limits of the thermoacoustic instability of the Rijke tube. The transfer function is determined analytically in the limit of small expansion parameter γ, and numerically for γ of order unity. In the case ρμ/cp = constant, an analytical solution can be found.


Sign in / Sign up

Export Citation Format

Share Document