AN ELECTROHYDRODYNAMIC ANALYSIS OF THE EQUILIBRIUM SHAPE AND STABILITY OF STRESSED CONDUCTING FLUIDS : APPLICATION TO LMIS

1986 ◽  
Vol 47 (C7) ◽  
pp. C7-351-C7-358
Author(s):  
M. CHUNG ◽  
P. H. CUTLER ◽  
T. E. FEUCHTWANG ◽  
E. KAZES ◽  
N. M. MISKOVSKY
1988 ◽  
Vol 6 (5) ◽  
pp. 2992-2997 ◽  
Author(s):  
N. M. Miskovsky ◽  
M. Chung ◽  
P. H. Cutler ◽  
T. E. Feuchtwang ◽  
E. Kazes

2019 ◽  
Author(s):  
Aurelio A. Rossinelli ◽  
Henar Rojo ◽  
Aniket S. Mule ◽  
Marianne Aellen ◽  
Ario Cocina ◽  
...  

<div>Colloidal semiconductor nanoplatelets exhibit exceptionally narrow photoluminescence spectra. This occurs because samples can be synthesized in which all nanoplatelets share the same atomic-scale thickness. As this dimension sets the emission wavelength, inhomogeneous linewidth broadening due to size variation, which is always present in samples of quasi-spherical nanocrystals (quantum dots), is essentially eliminated. Nanoplatelets thus offer improved, spectrally pure emitters for various applications. Unfortunately, due to their non-equilibrium shape, nanoplatelets also suffer from low photo-, chemical, and thermal stability, which limits their use. Moreover, their poor stability hampers the development of efficient synthesis protocols for adding high-quality protective inorganic shells, which are well known to improve the performance of quantum dots. <br></div><div>Herein, we report a general synthesis approach to highly emissive and stable core/shell nanoplatelets with various shell compositions, including CdSe/ZnS, CdSe/CdS/ZnS, CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S, and CdSe/ZnSe. Motivated by previous work on quantum dots, we find that slow, high-temperature growth of shells containing a compositional gradient reduces strain-induced crystal defects and minimizes the emission linewidth while maintaining good surface passivation and nanocrystal uniformity. Indeed, our best core/shell nanoplatelets (CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S) show photoluminescence quantum yields of 90% with linewidths as low as 56 meV (19.5 nm at 655 nm). To confirm the high quality of our different core/shell nanoplatelets for a specific application, we demonstrate their use as gain media in low-threshold ring lasers. More generally, the ability of our synthesis protocol to engineer high-quality shells can help further improve nanoplatelets for optoelectronic devices.</div>


2004 ◽  
Vol 40 (2) ◽  
pp. 585-588 ◽  
Author(s):  
R. Moretti ◽  
S. Dufour ◽  
G. Vinsard ◽  
B. Laporte

2005 ◽  
Vol 72 (8) ◽  
Author(s):  
J. Jalkanen ◽  
O. Trushin ◽  
E. Granato ◽  
S. C. Ying ◽  
T. Ala-Nissila

1987 ◽  
Vol 177 ◽  
pp. 381-394 ◽  
Author(s):  
Dominique P. Renouard ◽  
Gabriel Chabert D'Hières ◽  
Xuizhang Zhang

The influence of rotation upon internal solitary waves is studied in a (10 m × 2 m × 0.6 m) channel located on the large rotating platform at Grenoble University. We observe an intumescence which moves along the right-hand side of the channel with respect to its direction of propagation. Along the side, once the intumescence reaches its equilibrium shape, the height variation of the interface with time is correctly described by the sech2 function, and the characteristic KdV scaling law linking the maximum amplitude and the wavelength along the side is fulfilled. The intumescence is a stable phenomenon which moves as a whole without deformation apart from the viscous damping. For identical experimental conditions, the amplitude of the intumescence along the side increases with increasing Coriolis parameter, and at a given period of rotation of the platform, the celerity along the side increases with increasing amplitude. But for identical conditions, we found that the celerity along the side is equal to the celerity that the wave would have for such conditions without rotation. The amplitude of the intumescence in a plane perpendicular to the wall decreases exponentially with increasing distance from the side, but the crest of the wave is curved backward.


Sign in / Sign up

Export Citation Format

Share Document