scholarly journals Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients

2016 ◽  
Vol 51 (1) ◽  
pp. 341-363 ◽  
Author(s):  
Markus Bachmayr ◽  
Albert Cohen ◽  
Ronald DeVore ◽  
Giovanni Migliorati

We consider the linear elliptic equation − div(a∇u) = f on some bounded domain D, where a has the form a = exp(b) with b a random function defined as b(y) = ∑ j ≥ 1yjψj where y = (yj) ∈ ℝNare i.i.d. standard scalar Gaussian variables and (ψj)j ≥ 1 is a given sequence of functions in L∞(D). We study the summability properties of Hermite-type expansions of the solution map y → u(y) ∈ V := H01(D) , that is, expansions of the form u(y) = ∑ ν ∈ ℱuνHν(y), where Hν(y) = ∏j≥1Hνj(yj) are the tensorized Hermite polynomials indexed by the set ℱ of finitely supported sequences of nonnegative integers. Previous results [V.H. Hoang and C. Schwab, M3AS 24 (2014) 797−826] have demonstrated that, for any 0 <p ≤ 1, the ℓp summability of the sequence (j ∥ψj ∥L∞)j ≥ 1 implies ℓp summability of the sequence (∥ uν∥V)ν ∈ ℱ. Such results ensure convergence rates n− s with s = (1/p)−(1/2) of polynomial approximations obtained by best n-term truncation of Hermite series, where the error is measured in the mean-square sense, that is, in L2(ℝN,V,γ) , where γ is the infinite-dimensional Gaussian measure. In this paper we considerably improve these results by providing sufficient conditions for the ℓp summability of (∥uν∥V)ν ∈ ℱ expressed in terms of the pointwise summability properties of the sequence (|ψj|)j ≥ 1. This leads to a refined analysis which takes into account the amount of overlap between the supports of the ψj. For instance, in the case of disjoint supports, our results imply that, for all 0 <p< 2 the ℓp summability of (∥uν∥V)ν ∈ ℱfollows from the weaker assumption that (∥ψj∥L∞)j ≥ 1is ℓq summable for q := 2p/(2−p) . In the case of arbitrary supports, our results imply that the ℓp summability of (∥uν∥V)ν ∈ ℱ follows from the ℓp summability of (jβ∥ψj∥L∞)j ≥ 1 for some β>1/2 , which still represents an improvement over the condition in [V.H. Hoang and C. Schwab, M3AS 24 (2014) 797−826]. We also explore intermediate cases of functions with local yet overlapping supports, such as wavelet bases. One interesting observation following from our analysis is that for certain relevant examples, the use of the Karhunen−Loève basis for the representation of b might be suboptimal compared to other representations, in terms of the resulting summability properties of (∥uν∥V)ν ∈ ℱ. While we focus on the diffusion equation, our analysis applies to other type of linear PDEs with similar lognormal dependence in the coefficients.

2016 ◽  
Vol 51 (1) ◽  
pp. 321-339 ◽  
Author(s):  
Markus Bachmayr ◽  
Albert Cohen ◽  
Giovanni Migliorati

We consider the linear elliptic equation − div(a∇u) = f on some bounded domain D, where a has the affine form a = a(y) = ā + ∑j≥1yjψj for some parameter vector y = (yj)j ≥ 1 ∈ U = [−1,1]N. We study the summability properties of polynomial expansions of the solution map y → u(y) ∈ V := H01(D) . We consider both Taylor series and Legendre series. Previous results [A. Cohen, R. DeVore and C. Schwab, Anal. Appl. 9 (2011) 11–47] show that, under a uniform ellipticity assuption, for any 0 <p< 1, the ℓp summability of the (∥ψj∥L∞)j ≥ 1 implies the ℓp summability of the V-norms of the Taylor or Legendre coefficients. Such results ensure convergence rates n− s of polynomial approximations obtained by best n-term truncation of such series, with s = (1/p)−1 in L∞(U,V) or s = (1/p)−(1/2) in L2(U,V). In this paper we considerably improve these results by providing sufficient conditions of ℓp summability of the coefficient V-norm sequences expressed in terms of the pointwise summability properties of the (|ψj|)j ≥ 1. The approach in the present paper strongly differs from that of [A. Cohen, R. DeVore and C. Schwab, Anal. Appl. 9 (2011) 11–47], which is based on individual estimates of the coefficient norms obtained by the Cauchy formula applied to a holomorphic extension of the solution map. Here, we use weighted summability estimates, obtained by real-variable arguments. While the obtained results imply those of [7] as a particular case, they lead to a refined analysis which takes into account the amount of overlap between the supports of the ψj. For instance, in the case of disjoint supports, these results imply that for all 0 <p< 2, the ℓp summability of the coefficient V-norm sequences follows from the weaker assumption that (∥ψj∥L∞)j ≥ 1 is ℓq summable for q = q(p) := 2p/(2−p) . We provide a simple analytic example showing that this result is in general optimal and illustrate our findings by numerical experiments. The analysis in the present paper applies to other types of linear PDEs with similar affine parametrization of the coefficients, and to more general Jacobi polynomial expansions.


Author(s):  
Dong T.P. Nguyen ◽  
Dirk Nuyens

We introduce the \emph{multivariate decomposition finite element method} (MDFEM) for elliptic PDEs with lognormal diffusion coefficients, that is, when the diffusion coefficient has the form $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\bsy) = \sum_{j \ge 1} y_j \, \phi_j$ with $y_j \sim \calN(0,1)$ and a given sequence of functions $\{\phi_j\}_{j \ge 1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the \emph{multivariate decomposition method} (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using \emph{quasi-Monte Carlo} (QMC) methods, and for which we use the \emph{finite element method} (FEM) to solve different instances of the PDE.   We develop higher-order quasi-Monte Carlo rules for integration over the finite-di\-men\-si\-onal Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of \emph{anchored Gaussian Sobolev spaces} while taking into account the truncation error. These cubature rules are then used in the MDFEM algorithm.   Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-\dd/\lambda}) = O(\epsilon^{-(p^* + \dd/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-\dd/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $\dd = d \, (1+\ddelta)$ for some $\ddelta \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2 + \dd/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j \ge 1}$.


1994 ◽  
Vol 31 (2) ◽  
pp. 526-541 ◽  
Author(s):  
Robert B. Lund

This paper examines the infinitely high dam with seasonal (periodic) Lévy input under the unit release rule. We show that a periodic limiting distribution of dam content exists whenever the mean input over a seasonal cycle is less than 1. The Laplace transform of dam content at a finite time and the Laplace transform of the periodic limiting distribution are derived in terms of the probability of an empty dam. Necessary and sufficient conditions for the periodic limiting distribution to have finite moments are given. Convergence rates to the periodic limiting distribution are obtained from the moment results. Our methods of analysis lean heavily on the coupling method and a stochastic monotonicity result.


Author(s):  
Dũng Đinh

By combining a certain  approximation property in the spatial domain, and weighted summability  of the Hermite polynomial expansion coefficients  in the parametric domain, we investigate  linear non-adaptive methods of fully discrete polynomial interpolation approximation as well as fully discrete weighted quadrature methods of integration for parametric and stochastic elliptic PDEs with lognormal inputs. We explicitly construct  such methods and prove convergence rates of the approximations by them.  The linear non-adaptive methods of fully discrete polynomial interpolation approximation are sparse-grid collocation methods which are  certain sums taken over finite nested Smolyak-type indices sets of mixed tensor products of dyadic scale successive differences of spatial approximations of particular solvers, and of  successive differences of  their parametric Lagrange interpolating polynomials. The  Smolyak-type sparse interpolation grids in the parametric domain are constructed from the roots of Hermite polynomials or their improved modifications. Moreover, they generate in a natural way fully discrete weighted quadrature formulas for integration of the solution to parametric and stochastic elliptic PDEs and its linear functionals, and the error of the  corresponding integration can be estimated via the error in Bochner space.  We also briefly  consider similar problems for parametric and stochastic elliptic PDEs with affine inputs, and  problems of non-fully discrete polynomial interpolation approximation and integration. In particular, the convergence rates of non-fully discrete polynomial interpolation approximation and integration obtained in this paper significantly improve the known ones.


1994 ◽  
Vol 31 (02) ◽  
pp. 526-541 ◽  
Author(s):  
Robert B. Lund

This paper examines the infinitely high dam with seasonal (periodic) Lévy input under the unit release rule. We show that a periodic limiting distribution of dam content exists whenever the mean input over a seasonal cycle is less than 1. The Laplace transform of dam content at a finite time and the Laplace transform of the periodic limiting distribution are derived in terms of the probability of an empty dam. Necessary and sufficient conditions for the periodic limiting distribution to have finite moments are given. Convergence rates to the periodic limiting distribution are obtained from the moment results. Our methods of analysis lean heavily on the coupling method and a stochastic monotonicity result.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5811-5825
Author(s):  
Xinhong Zhang

In this paper we study the global dynamics of stochastic predator-prey models with non constant mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction and persistence in the mean of autonomous stochastic model and obtain a critical value between them. Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate the results developed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiangjun Dai ◽  
Suli Wang ◽  
Weizhi Xiong ◽  
Ni Li

Abstract We propose and study a stochastic delay single-species population system in polluted environment with psychological effect and pulse toxicant input. We establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and strong persistence of the single-species population and obtain the threshold value between extinction and weak persistence. Finally, we confirm the efficiency of the main results by numerical simulations.


2019 ◽  
Vol 374 (2) ◽  
pp. 823-871 ◽  
Author(s):  
Simon Becker ◽  
Nilanjana Datta

Abstract By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite dimensions, which are stronger than previously known bounds. We extensively discuss applications of our theory to quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.


2008 ◽  
Vol 192 ◽  
pp. 27-58 ◽  
Author(s):  
Masaki Tsukamoto

AbstractA Brody curve is a holomorphic map from the complex plane ℂ to a Hermitian manifold with bounded derivative. In this paper we study the value distribution of Brody curves from the viewpoint of moduli theory. The moduli space of Brody curves becomes infinite dimensional in general, and we study its “mean dimension”. We introduce the notion of “mean energy” and show that this can be used to estimate the mean dimension.


Author(s):  
Xia Zhao ◽  
Engang Tian

This paper investigates stability and stabilization of discrete systems with probabilistic nonlinearities and time-varying delay. New characters of the nonlinearities, the probability of the nonlinearities happening between different bounds, are used to build new type of system model, which can help us make a full use of the inner variation information of the nonlinearities. With the help of the new characters, new system model is proposed. Then, sufficient conditions for the mean square stability of the system can be obtained by using the Lyapunov functional approach and linear matrix inequalities technique. An example is proposed to illustrate the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document