scholarly journals Bayesian reconstruction of images of objects with high-density inclusions with suppression of artifacts

2018 ◽  
Vol 145 ◽  
pp. 05017
Author(s):  
Sergei Zolotarev ◽  
Valery Vengrinovich ◽  
Mohsen Mirzavand ◽  
Mieteeg Mukhtar ◽  
Ivan Georgiev

The technology of three-dimensional Bayesian tomographic reconstruction of homogeneous objects with high-density inclusions is developed. The approach is based on preliminary correction of projections by extracting the data corresponding to X-rays passing through a high-density region, and replacing it with synthesized data obtained by two-dimensional interpolation. An original method for selecting interpolation points is proposed and a mathematical algorithm is described that ensures the implementation of two-dimensional interpolation correction of projections.

1989 ◽  
Vol 106 ◽  
pp. 232-232
Author(s):  
Noam Soker

We suggest that the shape of a young asymmetric planetary nebulae may be influenced by a close binary star located at its center. This binary is a relic of the common envelope phase, presumably through which the asymmetric planetary nebula evolved. We assume that for a short period of time, shortly after the cession of the slow wind and long before the fast wind becomes effective, the binary ejects a small amount of mass, mainly in the equatorial plane. In this work we do not discuss the exact mechanism for the ejection of this pulse of mass. In the case in which the cooling is very efficient, (i.e., high-Mach-number isothermal flow), we can solve the problem analytically by using a few simplifying assumptions. In this case the high density region is shaped like a ring. We use two-dimensional hydrodynamics for the more general case. We find that at late times the high density region has a “horseshoe” shape, as viewed in the symmetry plane. There is an instability in the maximum density region. Finally we compare our results with the shape of the planetary nebula M2-9.


2014 ◽  
Vol 644-650 ◽  
pp. 1377-1381
Author(s):  
De Xi Ma ◽  
Rui Qing Du

High density resistivity method have integrated resistivity method and induced polarization method. It is widely used in exploring metallic deposits, especially metallic sulfide deposits. The aim of this article is to study three-dimensional inversion and visual expression of two-dimensional profile survey data in high density resistivity. After testing computing capability and application effect of three-dimensional inversion, the results show that the change rules of resistivity can be seen more clearly. And the visual expression after three-dimensional inversion is able to help us observe the distribution characteristics of resistivity with various perspectives. These results are helpful for us to deduce distribution characteristics and special locations of geological structures. They are also helpful to do some effective geological explaining works for spatial distributions and changing rules of ore deposits.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3472-3477 ◽  
Author(s):  
D. ARIOSA ◽  
H. BECK

Among all the common properties of HTCS cuprates, we build our model on two of them: their high anisotropy, and their extremely low density of charge carriers. The intra-layer pairing mechanism is provided by the two-dimensional over-screening of Coulomb repulsion.1,2 The c-axis zero point energy restricts this pairing to a low carrier density region. Below a critical density, the system behaves as a two-dimensional confined jellium where the energy gain due to charge pairing is larger than the c-axis localization energy. In the high density region, where the pairing energy cannot compensate the localization energy, the system delocalizes and crosses over to a three-dimensional regime. This competition between binding and confinement energies implies a monotonic decrease of mass anisotropy with doping. Pre-formed pairs which exist below a Mean Field (MF) temperature defined by the binding energy, account for pseudo-gap observations.3,4 The superconducting critical temperature T c is given by the Beresinskii–Kosterlitz–Thouless (BKT) transition of the two-dimensional layer, renormalized by quantum phase fluctuations (QPF).5 QPF account for the metal-insulator transition at very low doping.


1988 ◽  
Vol 98 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Lawrence J. Marentette ◽  
Robert H. Maisel

Correct preoperative planning is an essential aspect of any surgical procedure and it is equally important when midfacial reconstruction is contemplated. Conventional methods include standard radiographic views, plain tomography, photography, and computerized tomography. All of these methods produce a two-dimensional image of the patient. Three-dimensional computerized tomographic reconstruction allows the surgeon to visualize the entire facial skeletal deformity. The three-dimensional image produced also allows comparison of the deformity to surrounding normal structures, and thus makes the correction of facial asymmetries more precise. This new modality is particularly useful in the preoperative planning for patients with zygomaticomaxillary defects that result from either trauma or maxillectomy. Illustrative examples of patients in whom autogenous bone graft zygomaticomaxillary reconstruction was performed, after trauma and subsequent to subtotal maxillectomy, are presented. The amount and exact placement of the grafts was determined preoperatively from the analysis of the three-dimensional CT reconstruction, and the surgical planning was thereby simplified.


2021 ◽  
Author(s):  
Adrian Simon Losko ◽  
Sven Vogel

Abstract Tools for three-dimensional elemental characterization are available on length scales ranging from individual atoms, using electrons as a probe, to micrometers with X-rays. However, for larger volumes up to millimeters or centimeters, quantitative measurements of elemental or isotope densities were hitherto only possible on the surface. Here, a novel quantitative elemental characterization method based on energy-resolved neutron imaging, utilizing the known neutron absorption cross sections with their ‘finger-print’ absorption resonance signatures, is demonstrated. Enabled by a pixilated time-of-flight neutron transmission detector installed at an intense short-pulsed spallation neutron source, for this demonstration 3.25 million state-of-the-art nuclear physics neutron transmission analyses were conducted to derive isotopic densities for five isotopes in 3D in a volume of 0.25 cm3. The tomographic reconstruction of the isotope densities provides elemental maps similar to X-ray microprobe maps for any cross-section in the probed volume. The bulk isotopic density of a U-20Pu-10Zr-3Np-2Am nuclear transmutation fuel sample was measured, agrees well with mass-spectrometry and is evidence of the accuracy of the method.


2018 ◽  
Vol 25 (6) ◽  
pp. 1819-1826 ◽  
Author(s):  
Haiyan Yu ◽  
Sihao Xia ◽  
Chenxi Wei ◽  
Yuwei Mao ◽  
Daniel Larsson ◽  
...  

Novel developments in X-ray sources, optics and detectors have significantly advanced the capability of X-ray microscopy at the nanoscale. Depending on the imaging modality and the photon energy, state-of-the-art X-ray microscopes are routinely operated at a spatial resolution of tens of nanometres for hard X-rays or ∼10 nm for soft X-rays. The improvement in spatial resolution, however, has led to challenges in the tomographic reconstruction due to the fact that the imperfections of the mechanical system become clearly detectable in the projection images. Without proper registration of the projection images, a severe point spread function will be introduced into the tomographic reconstructions, causing the reduction of the three-dimensional (3D) spatial resolution as well as the enhancement of image artifacts. Here the development of a method that iteratively performs registration of the experimentally measured projection images to those that are numerically calculated by reprojecting the 3D matrix in the corresponding viewing angles is shown. Multiple algorithms are implemented to conduct the registration, which corrects the translational and/or the rotational errors. A sequence that offers a superior performance is presented and discussed. Going beyond the visual assessment of the reconstruction results, the morphological quantification of a battery electrode particle that has gone through substantial cycling is investigated. The results show that the presented method has led to a better quality tomographic reconstruction, which, subsequently, promotes the fidelity in the quantification of the sample morphology.


Sign in / Sign up

Export Citation Format

Share Document