scholarly journals Interaction of collar roof with the bottom support structure of a building

2018 ◽  
Vol 146 ◽  
pp. 02005
Author(s):  
Josef Musilek

Collar roofs belong to the traditional structures used for roofing buildings. In present, the collar roofs are widely used for their ability to omit internal vertical support structures (columns, support walls), which might be sometimes a complication during a design of the layout of the building. Collar roof acts on the bottom support structure of the building by quite big lateral horizontal forces. These forces are being often neglected in common practice. This fact leads to failures of the bottom support structures. Reinforced concrete rim made on the top of the brick wall is one of the methods, how to deal with these horizontal forces. The article deals with the interaction. The article deals with the interaction between the structure of the collar roof and the reinforced concrete rim.

2020 ◽  
pp. 10-25
Author(s):  
Amanda Hollis-Brusky ◽  
Joshua C. Wilson

Aggregating insights from Support Structure Theory and introducing others based on original research, this chapter introduces the Support Structure Pyramid. This is a model for conceptualizing litigation-based movement support structures, institutions, and their relationship to legal change. Additionally, this chapter presents three support structure types or strategies—infiltration, supplemental, and parallel alternative. Each of these strategies represents a different way to approach the problem of organizational or institutional creation. This typology of strategies is a way of understanding and contextualizing the choices and initial decisions of Christian Right movement leaders and patrons when they decided to consciously invest in institution building as a means of bolstering the legal support structure for their movement.


2019 ◽  
Vol 7 (6) ◽  
pp. 181 ◽  
Author(s):  
Pasin Plodpradit ◽  
Van Nguyen Dinh ◽  
Ki-Du Kim

This paper presents theoretical aspects and an extensive numerical study of the coupled analysis of tripod support structures for offshore wind turbines (OWTs) by using X-SEA and FAST v8 programs. In a number of site conditions such as extreme and longer period waves, fast installation, and lighter foundations, tripod structures are more advantageous than monopile and jacket structures. In the implemented dynamic coupled analysis, the sub-structural module in FAST was replaced by the X-SEA offshore substructure analysis component. The time-histories of the reaction forces and the turbine loads were then calculated. The results obtained from X-SEA and from FAST were in good agreement. The pile-soil-structure interaction (PSSI) was included for reliable evaluation of OWT structural systems. The superelement concept was introduced to reduce the computational time. Modal, coupled and uncoupled analyses of the NREL 5MW OWT-tripod support structure including PSSI were carried out and the discussions on the natural frequencies, mode shapes and resulted displacements are presented. Compared to the uncoupled models, the physical interaction between the tower and the support structure in the coupled models resulted in smaller responses. Compared to the fixed support structures, i.e., when PSSI is not included, the piled-support structure has lower natural frequencies and larger responses attributed to its actual flexibility. The models using pile superelements are computationally efficient and give results that are identical to the common finite element models.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Baran Yeter ◽  
Yordan Garbatov ◽  
C. Guedes Soares

The objective of the present work is to carry out the strength assessment of jacket offshore wind turbine support structures subjected to progressive rupture. A defect existing in a structure made during the fabrication may turn into a small-scale rupture and because of the high-stress concentration and low-cycle fatigue load. Therefore, the ultimate load-carrying capacity of the support structure is analyzed accounting for the progress of the rupture until the leg component experiences a full rupture along its circumference. The effect of imperfection severity is also investigated. The moment–curvature relationship of the structure concerning the studied cases is presented. Furthermore, the jacket support structures, at different water depths, are also analyzed and discussed. Finally, some of the leg components are removed one by one to study the redundancy of the jacket support structure at 80-m water depth.


Author(s):  
Guanglei Zhao ◽  
Chi Zhou ◽  
Sonjoy Das

Support structures are typically required to hold parts in place in various additive manufacturing processes. Design of support structure includes identifying both anchor locations and geometries. Extensive work has been done to optimize the anchor locations to reliably keep part in position, and minimize the contacting area as well as the total volume of the support structures. However, relatively few studies have been focused on the mechanical property analysis of the structure. In this paper, we proposed a novel design optimization method to identify the anchor geometry based on solid mechanics theory. Finite element analysis method is utilized to study the stress distribution on both the support structure and main part. Particle Swarm Optimization (PSO) algorithm with a novel constraining handling strategy is employed to optimize the design model. A gradient descent local search algorithm is utilized to quickly locate the global solution in the vicinity explored by PSO. The developed optimization framework is deployed on a bottom-up projection based Stereolithography process. The experimental results show that the optimized design can efficiently reduce the material used on support structure and marks left on the part.


2015 ◽  
Vol 825-826 ◽  
pp. 699-706 ◽  
Author(s):  
Enrico Rudolph ◽  
Andreas Ehrlich ◽  
Sandra Gelbrich ◽  
Meike Röhrkohl ◽  
Lothar Kroll

Modern civil engineering is characterized by resource and energy efficiency, and functional integration. The focus of modern architecture is therefore increasingly on free-formed buildings with organic shapes and biomorphic structures. The basis of new buildings still consists of conventional materials like steel, glass and reinforced concrete. However, the applicability of these materials is limited, regarding lightweight design, freedom of design, efficiency and functional integration. Innovative projects either cannot be implemented, or would be put to enormous costs and expenditure of resources.The theoretical and experimental basis for this functionally integrated support structure was established within the scope of the research project “New lightweight structural components and processing technologies for the application in support structures”, supported by the Sächsische Aufbaubank SAB.The main objective was to develop material and design for a lightweight modular support structure and to implement it by means of innovative production methods. New approaches included the application of glass-fiber-reinforced plastic (GFRP) due to its favorable mechanical properties, low susceptibility to corrosion and load-adjusted dimensioning.In connection with the realization of the production, different technological concepts were analyzed with reference to their suitability, integration of required force transmission and further functions during and after production. The lightweight elements were analyzed on a laboratory scale with regard to their production and their mechanical properties. A holistic production and tool concept resulted from these tests, that pictures the complete process chain from textile to component. The results were implemented in practice in form of an interactive honeycomb-bridge which was built in Chemnitz.


2020 ◽  
Author(s):  
Peyman Amirafshari ◽  
Feargal Brenan ◽  
Athanasios Kolios

Abstract. Offshore Wind Turbine (OWT) support structures need to be designed against fatigue failure under cyclic aerodynamic and wave loading. The fatigue failure can be accelerated in a corrosive sea environment. Traditionally, a stress-life approach called the S-N curve method has been used for design of structures against fatigue failure. There are a number of limitations in S-N approach related to welded structures which can be addressed by the fracture mechanics approach. In this paper the limitations of the S-N approach related to OWT support structure are addressed, a fatigue design framework based on fracture mechanics is developed. The application of the framework to a monopile OWT support structure is demonstrated and optimisation of in-service inspection of the structure is studied. It was found that both the design of the weld joint and Non-destructive testing techniques can be optimised to reduce In-service frequency. Furthermore, probabilistic fracture mechanics as a form of risk-based design is outlined and its application to the monopile support structure is studied. The probabilistic model showed to possess a better capability to account for NDT reliability over a range of possible crack sizes as well as providing a risk associated with the chosen inspection time which can be used in inspection cost benefit analysis. There are a number of areas for future research. including better estimate of fatigue stress with a time-history analysis, the application of framework to other types of support structures such as Jackets and Tripods, and integration of risk-based optimisation with a cost benefit analysis.


Author(s):  
Baran Yeter ◽  
Yordan Garbatov ◽  
C. Guedes Soares

The objective of the present work is to carry out the strength assessment of jacket offshore wind turbine support structures subjected to progressive rupture. A defect existing in a structure made during the fabrication may turn into a small-scale rupture and because of the high-stress concentration and low-cycle fatigue load. Therefore, the ultimate load-carrying capacity of the support structure is analysed accounting for the progress of the rupture until the leg component experiences a full rupture along its circumference. The effect of the severity of the imperfection is also investigated through 3 case studies that are created by varying the amplitude of the waves. The moment-curvature relationship of the structure with respect to the studied cases is presented. Furthermore, the jacket support structures, at different water depths, are also analysed and discussed. Finally, some of the leg components are removed one by one to study the redundancy of the jacket support structure at 80-m water depth.


2015 ◽  
Vol 789-790 ◽  
pp. 1140-1144
Author(s):  
Fatih Bahadir ◽  
Fatih Süleyman Balik

This study used test frames were purposely detailed and constructed with observed deficiencies in investigated dormitory buildings of Turkey. In this study, four reinforced concrete frames were produced two storeys, one bay and 3D in 1/6 geometric scale was tested. Since the studied frame was the external frame of the structure, brick infill wall with a window opening was also included. The first specimen was the reference specimen and contained no strengthening and no brick wall. The second specimen was contained brick wall. The third specimen was strengthened with internal steel panel. Finally fourth specimen’s was strengthened with infilled RC shear wall. The test specimens were subjected to reversed cyclic quasi-static lateral loading. Strength of the test specimens were measured and compared. Test results indicated that the strengthened specimens displayed significantly higher lateral strength than the reference specimen considerably.


Sign in / Sign up

Export Citation Format

Share Document