scholarly journals Silicon Conversion From Bamboo Leaf Silica By Magnesiothermic Reduction for Development of Li-ion Baterry Anode

2018 ◽  
Vol 156 ◽  
pp. 05021 ◽  
Author(s):  
Silviana Silviana ◽  
Wardhana J. Bayu

Silicon (Si) is a promising alternative material for the anode Lithium ion Battery (LIB). Si has a large theoretical capacity about 3579 mA hg-1, ten times greater than the commercial graphite anode (372 mA hg-1). Bamboo is a source of organic silica (bio-silica). Most part biogenetic content of SiO2 is obtained in bamboo leaves. This paper aims to investigate the synthesis nano Si from bamboo leaves through magnesiothermic reduction after silica extraction using sol–gel method and to observe nano Si of bamboo leaf as mixed material for lithium ion baterry. Silica and silicon content was determined using XRF. Silica product has 96,3 wt. % yield of extraction from bamboo leaf, while silicon yield was obtained 61.2 wt. %. The XRD pattern revealed that silica and silicon product were amourphous. The extracted silica and silicon from bambo leaf has spherical shape and agglomerated form. As anoda material for LIB, silicon product achieved 0,002 mAh capacity for 22 cycle.

2020 ◽  
Author(s):  
v jaisankar ◽  
KC Dharanibalaji ◽  
E K T Sivakumar

Abstract Solid-state electrolytes have emerged as a promising alternative material for next-generation Li-ion batteries due to their safety and reliability. In this investigation, we report the synthesis of Cerium(Ce) doped Li7La3Zr2O12(LLZO) ceramic oxide which has a garnet-like structure and in which Ce3+ typically occupies La3+ sites. The synthesised LLZO ceramic oxide is doped with various weight percentages of cerium(Ce3+) by sol-gel method using oxalic acid as a complexing agent and ethane-1,2-diol as a surface-active agent. The synthesised Li7La3-xCexZr2O12 garnet is screened for surface morphology, chemical composition, and phase transition by various analytical techniques. The surface morphology and composition were analysed by HR-SEM with EDX analysis respectively. The cubic face formed was confirmed by XRD results. Thermogravimetric analysis indicates the thermal stability of the prepared materials. The effect of addition of various weight percentages of cerium with LLZO on ionic conductivity was analysed using ac impedance spectroscopy and compared. The maximum ionic conductivity measured was 6.34×10-5Scm-1. The potential window was examined by cyclic voltammetry (CV), which showed that the lithium deposition and dissolution peak appeared around 0V.Li+/Li and no further reaction beyond 5.8V vs Li+/Li.The results showed that these materials could be used as a potential alternative material in the fabrication of lithium-ion batteries.


2010 ◽  
Vol 17 (01) ◽  
pp. 51-58 ◽  
Author(s):  
JEONG-HUN JU ◽  
YOUNG-MIN CHUNG ◽  
YU-RIM BAK ◽  
MOON-JIN HWANG ◽  
KWANG-SUN RYU

Carbon nano-coated LiNi 0.8 Co 0.15 Al 0.05 O 2/ C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the primary particles. The carbon nano-coated LNCAO/C exhibited good electrochemical performance at high C -rate. Also, the thermal stability at a highly oxidized state of the carbon nano-coated LNCAO was remarkably enhanced. The carbon nano-coating layer can serve as a physical and/or (electro-)chemical protection shell for the underlying LNCAO, which is attributed to an increase of the grain connectivity (physical part) and also to the protection of metal oxide from chemical reactions (chemical part).


2013 ◽  
Vol 01 (04) ◽  
pp. 1340015
Author(s):  
WENJUAN HAO ◽  
HAN CHEN ◽  
YANHONG WANG ◽  
HANHUI ZHAN ◽  
QIANGQIANG TAN ◽  
...  

Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries were synthesized by a facile sol–gel method followed by calcination at various temperatures (700°C, 800°C and 900°C). Lithium acetate dihydrate, manganese (II) acetate tetrahydrate, nickel (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate are employed as the metal precursors, and citric acid monohydrate as the chelating agent. For the obtained Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 materials, the metal components existed in the form of Mn 4+, Ni 2+ and Co 3+, and their molar ratio was in good agreement with 0.56 : 0.16 : 0.08. The calcination temperature played an important role in the particle size, crystallinity and further electrochemical properties of the cathode materials. The Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 material calcined at 800°C for 6 h showed the best electrochemical performances. Its discharge specific capacities cycled at 0.1 C, 0.5 C, 1 C and 2 C rates were 266.0 mAh g−1, 243.1 mAh g−1, 218.2 mAh g−1 and 192.9 mAh g−1, respectively. When recovered to 0.1 C rate, the discharge specific capacity was 260.2 mAh g−1 and the capacity loss is only 2.2%. This work demonstrates that the sol–gel method is a facile route to prepare high performance Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries.


Membranes ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 109 ◽  
Author(s):  
Jadra Mosa ◽  
Jonh Fredy Vélez ◽  
Mario Aparicio

Organic/inorganic hybrid membranes that are based on GTT (GPTMS-TMES-TPTE) system while using 3-Glycidoxypropyl-trimethoxysilane (GPTMS), Trimethyletoxisilane (TMES), and Trimethylolpropane triglycidyl ether (TPTE) as precursors have been obtained while using a combination of organic polymerization and sol-gel synthesis to be used as electrolytes in Li-ion batteries. Self-supported materials and thin-films solid hybrid electrolytes that were doped with Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were prepared. The hybrid network is based on highly cross-linked structures with high ionic conductivity. The dependency of the crosslinked hybrid structure and polymerization grade on ionic conductivity is studied. Ionic conductivity depends on triepoxy precursor (TPTE) and the accessibility of Li ions in the organic network, reaching a maximum ionic conductivity of 1.3 × 10−4 and 1.4 × 10−3 S cm−1 at room temperature and 60 °C, respectively. A wide electrochemical stability window in the range of 1.5–5 V facilitates its use as solid electrolytes in next-generation of Li-ion batteries.


Nanoscale ◽  
2015 ◽  
Vol 7 (33) ◽  
pp. 13840-13847 ◽  
Author(s):  
Lei Wang ◽  
Biao Gao ◽  
Changjian Peng ◽  
Xiang Peng ◽  
Jijiang Fu ◽  
...  

Ultrafine Si nanoparticles and Si@C/RGO nanocomposites are produced from bamboo leaves and show promising applications in lithium ion batteries.


Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13660-13667 ◽  
Author(s):  
Xudong Liu ◽  
Yingchun Lyu ◽  
Zhihua Zhang ◽  
Hong Li ◽  
Yong-sheng Hu ◽  
...  

Carbon-coated Li2MoO4 nanotubes fabricated by sol–gel method exhibit an excellent electrochemical performance when evaluated as an anode material for Li-ion battery.


2018 ◽  
Vol 71 (7) ◽  
pp. 497
Author(s):  
Lingfang Li ◽  
Changling Fan ◽  
Jiaxing Yang

A novel composite cathode for lithium ion batteries, Li3V2(PO4)3‖Li2NaV2(PO4)3/C, was synthesized by a sol-gel method. Cetyltrimethylammonium bromide (CTAB) was used as a surfactant while polyvinylidene difluoride (PVDF) was the carbon source. X-ray diffraction (XRD) and Raman results showed that the components of this composite are monoclinic Li3V2(PO4)3, rhombohedral Li2NaV2(PO4)3 and an amorphous carbon-coating. Four potential plateaus occur at the charge/discharge curves and the longest plateau is observed at a potential of 3.8/3.7 V. Therefore, the alkali metal ion intercalation and deintercalation mostly occur at this potential, which is different to that observed for Li3V2(PO4)3. In addition to the stable working potential, this composite also possesses an outstanding electrochemical performance. The sample containing 8.32 % carbon content delivers a capacity of 119 mAh g−1 at 0.2 C rate and 87 mAh g−1 at 12 C. After 50 charge/discharge cycles at 1 C, a coulombic efficiency of 98.4 % is maintained. This enhancement of the electrochemical performance could be attributed to the synergistic effect between monoclinic Li3V2(PO4)3 and rhombohedral Li2NaV2(PO4)3.


2017 ◽  
Vol 17 ◽  
pp. 106-112 ◽  
Author(s):  
Veena Ragupathi ◽  
K. Srimathi ◽  
P. Panigrahi ◽  
J.W. Lee ◽  
Ganapathi Subramanian Nagarajan

An attempt has been made to synthesize hexagonal LiMnBO3 (h-LMB) through sol-gel technique. The synthesized h-LiMnBO3 have been examined for their physical and electrochemical characteristics by X-ray diffraction analysis (XRD) and Thermal analysis (TG), Scanning electron microscopy (SEM), Raman spectroscopy as well as through charge –discharge cycling. XRD results revealed the existence of hexagonal polymorphs with P6 space group. Stability of h-LiMnBO3 material is analyzed by thermal analysis. SEM image shows spherical shape nanoparticle with the average diameter 50 nm. Raman spectroscopy result indicates the presence of Mn-O vibration. An electrochemical study indicates the sol-gel derived hexagonal LiMnBO3 delivers a first charging capacity of 97.5 mAh g-1 and discharging capacity of 55. 85 mAh g-1 within the potential window of 2V-4.5 V at C/10 rate and retaining a reversible discharge capacity of 42.71 mAh g-1 at the 10th cycle.


2006 ◽  
Vol 301 ◽  
pp. 91-94
Author(s):  
Yasuhiro Isshiki ◽  
Kaoru Dokko ◽  
Jun Ichi Hamagami ◽  
Takashi Takei ◽  
Kiyoshi Kanamura

Thin films of lithium ion conductive ceramic Li4+xAlxSi1-xO4 were fabricated on Au substrate using sol-gel process. The sol of Li-Al-Si-O was spread on Au substrate using a spin coater, and it was gelated at room temperature. The gel was calcinated at 400 °C and heat-treated at high temperatures between 500 °C and 800 °C in air. The addition of poly(vinylpyrrolidone) (PVP) was effective in stabilizing the sol. Furthermore, the morphology of the obtained thin film was changed by the PVP additive. Li4+xAlxSi1-xO4 thin film prepared at 800 °C exhibited a Li+ ion conductivity of 10-8 S cm-1 at room temperature.


2019 ◽  
Vol 9 (2) ◽  
pp. 3866-3873

Composites of {[(1-x-y) LiFe0.333Ni0.333 Co0.333] PO4}, xLi2FePO4F and yLiCoPO4system were synthesized using the sol-gel method. Stoichiometric weights of the mole-fraction of LiOH, FeCl2·4H2O and H3PO4, LiCl, Ni(NO3)2⋅6H2O, Co(Ac)2⋅4H2O, as starting materials of lithium, Iron, Nickel , and Cobalt, in 7 samples of the system, respectively. We exhibited Li1.167 Ni0.222 Co0.389 Fe0.388 PO4 is the best composition for cathode material in this study. Obviously, the used weight of cobalt in these samples is lower compared with LiCoO2 that is an advantage in view point of cost in this study. Charge-discharge haracteristics of the mentioned cathode materials were investigated by performing cycle tests in the range of 2.4–3.8 V (versus Li/Li+). Our results confirmed, although these kind systems can help for removing the disadvantage of cobalt which mainly is its cost and toxic, the performance of these kind systems are similar to the commercial cathode materials in Lithium Ion batteries (LIBs).


Sign in / Sign up

Export Citation Format

Share Document