scholarly journals Polymer based microneedle patch fabricated using microinjection moulding

2018 ◽  
Vol 192 ◽  
pp. 01039 ◽  
Author(s):  
Pattanaphong Janphuang ◽  
Mongkhol Laebua ◽  
Chanwut Sriphung ◽  
Phatsakon Taweewat ◽  
Anan Sirichalarmkul ◽  
...  

This paper presents the development of a polymer based microneedle patch for transdermal drug delivery application using plastic microinjection moulding. Design and analysis of the microneedle cavities and mould insert used in the injection moulding process were carried out using Computer-Aided Engineering (CAE) software. A mould insert with low surface roughness was fabricated using Micro Electrical Discharge Machining (μ-EDM). The injection moulding parameters including clamping force, temperature, injection pressure and velocity were characterized in order to obtain the optimum reproducibility. Solid truncated cone microneedles, made of biocompatible polymethyl methacrylate (PMMA), with a round tip radius of 50 μm and 500 μm in height have been realized by microinjection moulding process demonstrating the potential of a low cost, high production efficiency, and suitable for mass production. In addition, a mould insert of cylindrical microneedles fabricated using X-ray LIGA has been proposed.

Author(s):  
Vincenzo Bellantone ◽  
Rossella Surace ◽  
Francesco Modica ◽  
Irene Fassi

Due to its ability to produce low-cost and high repeatable micro polymeric parts, injection moulding of micro components is emerging as one of the most promising enabling technologies for the manufacturing of polymeric micro-parts in in many different fields, from IT to Healthcare, to Medicine. However, when approaching the micro-scale, different issues related to the process should be addressed, especially as the depth of the mould cavity becomes very thin. In particular, the mould roughness could affect the surface quality of the produced micro components, like in macro moulding, as well as the complete filling of the parts. Although micro-injection moulding process has been extensively studied, further research on the effect of mould roughness conditions and on non-Newtonian fluid flow in micro-cavities are required. This will shed a light and open up new paths for a deeper understanding of the moulding scenario. The main objective of the present paper is the evaluation of the influence of the mould roughness on the polymer flow during micro injection moulding process. The test parts have been realized in POM material and have thickness lower than 250 μm. The test part design has been properly conceived in order to neglect the effect of dimensions and geometry and to highlight the roughness contribution during the filling phase of micro injection moulding process. The experimentation has been performed considering cavities with different roughness values (3 levels) and decreasing depths (3 levels), for a total of nine test parts manufactured by micro-electrical discharge machining process (μ-EDM). The results of the experiments are discussed in the paper and show that cavity surface roughness affects the injection process as the moulding scale level is decreased. In particular, when the cavity depths are reduced, higher surface roughness promotes the filling of components and this finding could be ascribed to the increase of wall slip effect.


2013 ◽  
Vol 748 ◽  
pp. 544-548 ◽  
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

This paper presents the original development of an experimental approach in studying the multiple tensile characterizations as key quality characteristics for several different plastic gear materials related to various parameters in injection moulding process. In this study, emphases are given on a new low-cost mechanism for the testing of the injection moulded plastic spur gear specimens with various teeth module. The testing fixture are developed and validated to provide uniform state of tension with series of plastic gear specimens produced in accordance with the systematically designed of experiment. The effects of changes in the process parameters including melt temperature, packing pressure, packing time and cooling time at three different levels on the elongation at break and ultimate strength of plastic gear is evaluated and studied through the proposed experimental approach.


Author(s):  
Rossella Surace ◽  
Vincenzo Bellantone ◽  
Irene Fassi

This paper reports on fabrication and characterization of a micro-filter for hearing aid, dialysis media and inhaler. The micro-feature specifications consist in a diameter of 2.3 mm, a thickness of 0.2 mm and it is composed by a mesh with grid of 80 μm and ribs with width of 70 μm. The proposed micro-filter is fabricated by micro injection moulding process adopting a steel mould manufactured by micro Electrical Discharge Machining process (micro EDM). Different polymeric materials (POM, HDPE, LCP), particularly indicated for the injection moulding applications due to their flowability and stability, are tested and evaluated in relation to the process replication capability. Since the polymer micro-filter is made of a complex grid of micro-ribs, the injection moulding process must ensure complete filling of the micro-parts, preventing any defects (i.e. premature solidification, incomplete filling, flash and air traps). To this aim, different system parameters configurations (melt and mould temperature, injection velocity, holding time and pressure, cooling time, pressure limit) are tested for obtaining acceptable part in all polymers grade. Finally, the component is dimensionally characterized by confocal microscopy and its filtration capacity is then verified. Although the feature complexity was high, the results showed that the object could be successfully replicated by filling completely the micro cavities with two of them: POM and HDPE. The most significant parameters influencing the part filling were the mould temperature and the injection velocity. These findings allow to further optimize the micro-injection process parameters to obtain a high quality product.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Akanksha Singh ◽  
Laurent Robert ◽  
Gérard Michel ◽  
Chantal Khan-Malek

Abstract This paper presents the adaptation of a conventional injection moulding process to manufacture microfluidic components in thermoplastic polymers using alternative, exchangeable microstructured silicon-based mould inserts. The mould inserts consist of thick silicon wafers with microfeatures patterned in SU-8 epoxy photo-resist. This process allows changing the mould inserts according to the design, very easily and cost-effectively. The SU-8/Si mould inserts were robust enough to manufacture small series for laboratory purpose. More than a hundred replicas in thin polypropylene (PP) were produced successfully for a biochip designed for protein crystallisation and analysis.


Author(s):  
Carlos A Costa ◽  
Carlos R Altafini ◽  
Fabio R Visioli ◽  
André P Baccin

This work presents a study regarding the influence of the cooling process, as a result of different mould insert materials, on ceramic parts dimensions obtained by low-pressure injection moulding process. Discs of ceramic with Ø80 × 2 mm, composed by 86 wt.% alumina (Al2O3) and 14 wt.% organic vehicle, were produced. An experimental injection mould was designed and manufactured with built-in heating and cooling systems, controlled by a DAQ (Measurement Computing – USB-TC) and thermocouples K type. Four types of insert materials were used: aluminium alloy (AA7075-T6), electrolytic copper, brass alloy (C36000) and SAE1045 steel. Tests were carried out considering injection moulding parameters constant, i.e. initial mould temperature, injection pressure and time and extraction temperature. All the post-process (debinding by wicking; final debinding and sintering) parameters were also kept constant. Parts were analysed considering dimensions, mass, geometry, visual aspects and defects. The results showed that the cooling rate resulting from the thermal conductivity of each material has influenced more significantly the dimensional shrinkage and mass reduction of the samples during the intermediate post-processes phases. The geometric deviations were different for each condition throughout the process and they increased in the final parts. The parts produced with higher cooling rate had higher geometric deviations.


Author(s):  
Gianluca Trotta ◽  
Vincenzo Bellantone ◽  
Rossella Surace ◽  
Irene Fassi

The increasing demand for small and even micro scale parts is boosting the development of reliable micro system technologies. Micro-fabrication process capabilities should expand to encompass a wider range of materials and geometric forms, by defining processes and related process chains that can satisfy the specific functional and technical requirements of new emerging multi-material products, and ensure the compatibility of materials and processing technologies throughout these manufacturing chains. Micro injection moulding is the process of transferring the micron or even submicron precision of microstructured metallic moulds to a polymeric products. It represents one of the key technologies for micro manufacturing because its mass production capability and relatively low production cost. Polymers have relatively low cost, and offer good mechanical and thermal strength, electrical insulation, optical transparency, chemical stability and biocompatibility. In this work the authors investigate the micro injection moulding process parameters on the overall quality of a miniaturized dog-bone shaped specimen. The aim of the experimentation is to calibrate the process and set the machine for the correct filling of the component. A set of injection parameters are selected for study by experimental plan and simulation tool and then discussed. Simulation results are used to better understand the polymer flow behaviour during the filling phase. A commercial software is used and input data, collected during the micro injection moulding process, are included using as performance indicators flow front position and moulded mass. Process simulation can provide, at the present time, mostly qualitative input to the designer and process engineer. Two different polymers materials are tested and evaluated in relation to the process replication capability: Polyoxymethylene (POM) and Liquid Cristal Polymer (LCP). Finally, the moulding factors with significant statistical effects are identified. The holding pressure and holding time for POM and the holding pressure and injection velocity for LCP show the highest influence on achieving high part mass.


2015 ◽  
Vol 773-774 ◽  
pp. 173-177 ◽  
Author(s):  
Azriszul Mohd Amin ◽  
Mohd Halim Irwan Ibrahim ◽  
Rosli Asmawi ◽  
Najwa Mustapha ◽  
Mohd Yussni Hashim

Metal injection moulding has gain much attention due to flexibility and high productivity of the plastics injection moulding with the powder metallurgy method of sintering. In order to gain better shape retention, optimum density of green part is required. This paper deals with the application of Taguchi optimisation technique on getting the optimum density for Metal Injection Moulding (MIM) components base on certain parameters in process injection. For this purposes only 3 process parameters were considered here including its interactions which are injection pressure, injection temperature and mould temperature. Since its more close to the final products these parameters were selected and other parameters will be kept constant. An orthogonal array of L16 experimental base design was conducted. Confirmation test will be done base on Signal-to-Noise (S/N) ratio and it Means.


2014 ◽  
Vol 555 ◽  
pp. 524-529 ◽  
Author(s):  
Andrei Adam ◽  
Cristian Cosma ◽  
Andrei Pop

Processing by injection is the technological process by that the thermoplastics material is injected, under pressure, in the cavity of a mould, where it cools down and solidifies. This process is the most common method for obtaining plastic materials. Injection moulding of thermoplastics has emerged as the premier vehicle for delivering high quality, value added commercial products. Continued global competitiveness has increased standards for product capability and quality while requiring reduced product development time and unit cost. Despite advanced design methods and new process technologies, it is becoming apparent that the injection moulding process is neither flexible nor robust. This paper presents a set of experiments that focused on particular processing conditions of injection through narrow section, thin-wall injection and microinjection. In these cases, the ultrasonic activation does not play an important role as single influence factor but could amplify or strengthen the influence of classical setting parameters of the process: mould temperature, injection pressure and temperature


2020 ◽  
Vol 4 (4) ◽  
pp. 100
Author(s):  
Loucas Papadakis ◽  
Stelios Avraam ◽  
Demetris Photiou ◽  
Simona Masurtschak ◽  
Juan Carlos Pereira Falcón

Injection moulding is one the most familiar processes for manufacturing of plastic parts by injecting molten thermoplastic polymers into a metallic mould. The cycle time of this process consists of the phases of injection, packing, cooling, and ejection of the final product. Shortening of cycle time is a key consideration to increase productivity. Therefore, in this manuscript the adoption of additively manufactured mould inserts with conformal cooling channels by means of selective laser melting (SLM) with the aim to reduce process cycles is presented. The design and manufacture of a mould insert with conformal cooling channels for producing pressure fitting thermoplastic parts is described. Numerical analysis of the injection process and simulation of shape distortions after SLM were conducted providing useful results for the design and manufacture of the mould insert. The results of the numerical analyses are compared with experimental 3D geometrical data of the additively manufactured mould insert. Temperature measurements during the real injection moulding process demonstrating promising findings. The adoption of the introduced method for the series production of injection moulded thermoplastics proves a shortening of cycle times of up to 32% and a final product shape quality improvement of up to 77% when using mould inserts with conformal cooling channels over the conventional mould inserts.


2017 ◽  
Vol 380 ◽  
pp. 212-217 ◽  
Author(s):  
C.A. Araújo Mota ◽  
C.J. Araújo ◽  
A.G. Barbosa de Lima ◽  
Tony Herbert Freire de Andrade ◽  
D. Silveira Lira

SMART materials have gained several applications in industries, especially aeronautical and biomedical. Therefore, the fabrication process of these materials must present quality in the completion and dimensioning, in addition to well established mechanical properties. In this sense, the Resin Transfer Molding (RTM) process is presented as an alternative to the manufacture of such products. This process presents advantages compared to other methods, such as, product quality and low cost. Thus, this work aims to model and simulate numerically the manufacturing process of polymer composite reinforced with NiTi shape memory alloy by RTM using the Ansys CFX commercial software. Results of pressure, velocity and volume fractions fields of the phases are presented and discussed. It was verified that the process parameters, like injection pressure and resin inlet and air outlet positions influenced the total time of the process and final product quality.


Sign in / Sign up

Export Citation Format

Share Document