scholarly journals Dynamics of dry spots in the liquid film moved by the gas flow in the mini-channel under intensive local heating

2018 ◽  
Vol 194 ◽  
pp. 01059
Author(s):  
Egor Tkachenko

Experimental studies of hydrodynamics and the heat transfer crisis were carried out for a two-phase stratified flow in a mini-channel with intensive heating from a heat source of 1x1 cm2. It has been established that as the heat flow increases, the total area of dry spots on the heater increases, but when a certain temperature of the heater surface reaches ≈100 °C, the area of dry spots begins to decrease. With the help of high-speed visualization (shooting speed 100000 frames per second), several stages of formation of a dry spot (a typical size of the order of 100 microns) were isolated. It was found that at a heat flux of 450 W/cm2 about 1 million dry spots per 1 second are formed and washed on the surface of the heater (1 cm2). The speed of the contact line when dry spot is forming reaches 10 m/s.

Author(s):  
Dohwan Kim ◽  
Matthew J. Rau

Abstract Small tubes and fins have long been used as methods to increase surface area for convective heat transfer in single-phase flow applications. As demands for high heat transfer effectiveness has increased, implementing evaporative phase-change heat transfer in conjunction with small fins, tubes, and surface structures in advanced heat exchanger and heat sink designs has become increasingly attractive. The complex two-phase flow that results from these configurations is poorly understood, particularly in how the gas phase interacts with the flow structure of the wake created by these bluff bodies. An experimental study of liquid-gas bubbly flow around a cylinder was performed to understand these complex flow physics. A 9.5 mm diameter cylinder was installed horizontally within a vertical water channel facility. A high-speed camera captured the movement of the liquid-gas mixture around the cylinder for a range of bubble sizes. Liquid Reynolds number, calculated based on the cylinder diameter, was varied approximately from 100 to 3000. Time-averaged probability of bubble presence was calculated to characterize the cylinder wake and its effects on the bubble motion. The influence of the liquid Reynolds number, superficial air velocity, and bubble size is discussed in the context of the observed two-phase flow patterns.


1947 ◽  
Vol 14 (4) ◽  
pp. A317-A336 ◽  
Author(s):  
Ascher H. Shapiro ◽  
W. R. Hawthorne

Abstract Recent developments in the fields of propulsion, flow machinery, and high-speed flight have emphasized the need for an improved understanding of the characteristics of compressible flow. A one-dimensional analysis for flow without shocks is presented which takes into account the simultaneous effects of area change, wall friction, drag of internal bodies, external heat exchange, chemical reaction, change of phase, injection of gases, and changes in molecular weight and specific heat. The method of selecting independent and dependent variables, and the organization of the working equations, leads, it is believed, to a better understanding of the influence of the foregoing effects, and also simplifies greatly the analytical treatment of particular problems. Examples are given first of several simple types of flow, including (a) area change only; (b) heat transfer only; (c) wall friction only; and (d) gas injection only. In addition, examples of flow with combined effects are given, including (a) simultaneous friction and area change; (b) simultaneous friction and heat transfer; and (c) simultaneous liquid injection and evaporation. A one-dimensional analysis for flow through a discontinuity is presented, allowing for energy, shock, drag, and gas-injection effects, and for changes in gas properties. This analysis is applicable to such processes as: (a) the adiabatic normal shock; (b) combustion; (c) moisture condensation shocks; and (d) steady explosion waves.


Author(s):  
Guohai Jia ◽  
Guoshuai Tian ◽  
Zicheng Gao ◽  
Dan Huang ◽  
Wei Li ◽  
...  

Abstract Cyclone venturi dryer is suitable for drying materials with large particle size and wide distribution. The working process of cyclone venturi dryer is a very complicated three-dimensional and turbulent motion, so it is difficult to be studied theoretically and experimentally. In order to study the internal flow characteristics of the biomass particle cyclone venturi dryer, the computational fluid dynamics (CFD) software was used to simulate the gas-solid two-phase flow field inside the cyclone venturi dryer. The continuous phase adopts the Realizable k-ε turbulence model and the particle phase is discrete. The effects of different injection volume on the pressure, velocity, and temperature fields inside a cyclone venturi dryer were analyzed. The results showed that the maximum pressure drop and velocity change inside the dryer were at the venturi pipe. The wet material of the cyclone venturi dryer was inhaled into the venturi contraction tube by the negative pressure formed after the highspeed airflow was ejected, thus the mixture was completed in the venturi throat. The wood debris material was mixed with the high-speed hot gas flow in the venturi throat and then sprayed into the diffusion pipe. In the diffusion pipe of venturi, the heat and mass transfer process of wet wood debris and heat flow in venturi diffusion tube was completed. It is in good agreement with the simulation results. This study can provide a reference for the optimization design of the related cyclone venturi dryer structure.


Author(s):  
J. J. Schro¨der ◽  
S. Alraun

Experimental investigations on heat transfer in tubular micro- or minichannel arrangements more often report on two-phase flow instabilities, pulsations or oscillations, which result in a remarkable influence on heat transfer efficiency. In order to explain the piston-like oscillations of the steam-plugs and water-slugs (-columns), the authors studied the somehow similar process which occurs in the worldwide known toy steam boat. Experiments have been performed which used a demonstration plant made of glass. By controlled electrical heating, high-speed video, pressure and local temperature measurements, the paths of energy have been disclosed. The results are as surprising as the effect of making gold from sand with respect to an equivalent axial heat-conductivity of the water-filled glass tube. Initiated by these results, an abstracting model is presented that analytically quantifies this new regenerating (oscillating and conducting) heat transfer mode e.g. concerning the combination of a heat recharging tube wall and an oscillating water column in a field of diminishing temperatures between the temperature of the boiler surface and the subcooled bulk water. By introducing these heat transfer details, the steam boat can give an answer, not only on frequency and amplitude of the oscillations, but on the steady state conditions for — or time-dependency of — the location of zero-crossing as well. Experimental results and model calculations are in good agreement and need no fitting factors. This is the base to discuss that process along with its physical parameters and compare it to the above mentioned observations in flow-boilers or pulsating heat pipes etc. which use microchannels or minichannels.


1967 ◽  
Vol 89 (2) ◽  
pp. 185-193 ◽  
Author(s):  
M. E. Goldstein ◽  
Wen-Jei Yang ◽  
J. A. Clark

An analysis has been made to determine the heat transfer and friction characteristics in a two-phase (gas-liquid) flow over a circular cylinder. It is demonstrated that the resulting two-layer flow problem can be formulated exactly within the framework of laminar boundary layer theory. Two cases are studied; (1) For the parameter E greater or equal to 0.1 and the drop trajectories straight and, (2) For E less or equal to 0.1 and for any drop trajectory. Solutions obtained in power series include the local liquid-film thickness, velocity and temperature profiles, skin friction and Nusselt number. Numerical results disclose a significant increase in both heat transfer rate and skin friction over those of a pure gas flow. The theoretical prediction compares favorably with experimental results of Acrivos, et al. [1].


Author(s):  
Elizaveta Ya. Gatapova ◽  
Vladimir V. Kuznetsov ◽  
Oleg A. Kabov ◽  
Jean-Claude Legros

In our previous investigations the formation of liquid bump of locally heated laminar liquid film with co-current gas flow was obtained [1,2]. The evaporation of liquid was left out of account. Heat transfer to the gas phase was approximately specified by a constant Biot number [2,3]. The aim of this work is an investigation of the evaporation effect, the hydrodynamics and the heat transfer of liquid film flow in a channel 0.2–1 mm height. The 2-D model of locally heated liquid film moving under gravity and the action of co-current gas flow with low viscosity in a channel are considered. The channel can be inclined at an angle with respect to horizon. It is supposed that the height of the channel is much less than its width. Surface tension is assumed to depend on temperature. The velocity profiles for gas and liquid regions are found from problem of joint motion of isothermal non-deformable liquid film and gas flow. Using the findings the joint solution of heat transfer and diffusion problem with corresponding boundary condition is calculated. Having the temperature field in the whole of liquid and gas flow region we find a local heat transfer coefficient on the gas-liquid interface and Biot number as a function of flow parameters and spatial variables.


Sign in / Sign up

Export Citation Format

Share Document