Two-Phase Wakes in Adiabatic Liquid-Gas Flow Around a Cylinder

Author(s):  
Dohwan Kim ◽  
Matthew J. Rau

Abstract Small tubes and fins have long been used as methods to increase surface area for convective heat transfer in single-phase flow applications. As demands for high heat transfer effectiveness has increased, implementing evaporative phase-change heat transfer in conjunction with small fins, tubes, and surface structures in advanced heat exchanger and heat sink designs has become increasingly attractive. The complex two-phase flow that results from these configurations is poorly understood, particularly in how the gas phase interacts with the flow structure of the wake created by these bluff bodies. An experimental study of liquid-gas bubbly flow around a cylinder was performed to understand these complex flow physics. A 9.5 mm diameter cylinder was installed horizontally within a vertical water channel facility. A high-speed camera captured the movement of the liquid-gas mixture around the cylinder for a range of bubble sizes. Liquid Reynolds number, calculated based on the cylinder diameter, was varied approximately from 100 to 3000. Time-averaged probability of bubble presence was calculated to characterize the cylinder wake and its effects on the bubble motion. The influence of the liquid Reynolds number, superficial air velocity, and bubble size is discussed in the context of the observed two-phase flow patterns.

Author(s):  
Nicholas A. Evich ◽  
Nicholas R. Larimer ◽  
Mary I. Frecker ◽  
Matthew J. Rau

Abstract Advanced manufacturing techniques have improved dramatically in recent years and design freedom for engineered components and systems has never been greater. Despite these advancements, the majority of our design tools for thermal-fluids systems are still rooted within traditional architectures and manufacturing techniques. In particular, the complex nature of two-phase flow and heat transfer has made the development of design methods that can accommodate these complex geometries enabled by new manufacturing techniques challenging. Here, we investigate a new design method for two-phase flow systems. We conduct a multiobjective parameter study considering two-phase flow and heat transfer through a single channel with a circular cross section. To increase our design degrees of freedom, we allow the channel to increase or decrease in cross-sectional area along its flow length, but constrain the channel inlet and outlet to a constant hydraulic diameter. Maximizing heat transfer and minimizing pressure drop are the two design objectives, which we evaluate using two-phase heat transfer correlations and the Homogeneous Equilibrium Model. We find that using small expansion angles can greatly reduce two-phase flow pressure drop and also provide high heat transfer coefficients when compared to straight channel designs. We present a set of feasible designs for varying input heat fluxes, liquid mass flow rates, and channel orientation angles and show how the ideal expansion channel angle varies with these operational conditions.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Feng Gao ◽  
Weitao Jia ◽  
Yan Li ◽  
Dongya Zhang ◽  
Zhengliang Wang

Abstract For high-speed motorized spindle bearing, temperature rise is the primary factor that restricts the maximum speed of spindle and affects the stability of system. This paper addresses the lubrication and cooling of spindle bearing by exploiting the precise oil control and high cooling efficiency of oil–air lubrication. Enlightened by the bearing tribology and two-phase flow theory, a numerical model of oil–air two-phase flow heat transfer inside bearing cavity is created, with which the effects of operating condition and nozzle structure parameters on the temperature rise are studied. As the results show, with the elevation in speed, the heat generation increases rapidly, and despite the somewhat enhanced heat transfer effect, the temperature still tends to rise. Given the higher volume fraction of air than oil in the two-phase flow, the temperature rise of bearing is suppressed greatly as the air inlet velocity increases, revealing a remarkable cooling effect. When a single nozzle is used, the bearing temperature increases from the inlet to both sides, which peaks on the opposite side of the inlet. In case multiple evenly distributed nozzles are used, the high-temperature range narrows gradually, and the temperature distributions in the inner and outer rings tend to be consistent. With the increase in the nozzle aspect ratio, the airflow velocity drops evidently, which affects the heat dissipation, thereby resulting in an aggravated temperature rise. Finally, the simulation analysis is verified through experimentation, which provides a theoretical basis for selecting optimal parameters for the oil–air lubrication of high-speed bearing.


2006 ◽  
Author(s):  
Alexandru Herescu ◽  
Jeffrey S. Allen

High speed microscopy experiments investigating two-phase (gas-liquid) flow behavior in capillary-scale systems, that is, systems where capillary forces are important relative to gravitational forces, have revealed a unique unsteady annular flow with periodic destabilization of the gas-liquid interface. Standing waves develop on the liquid film and grow into annular lobes similar with those observed in low-speed two-phase flow. The leading face of the lobe will decelerate and suddenly become normal to the wall of the capillary, suggesting the possibility of a shock wave in the gas phase at a downstream location from the minimum gas flow section. Visualization of the naturally occurring convergent-divergent nozzle-like structures as well as a discussion on the possibility of shock wave formation are presented.


Author(s):  
Kyosung Choo ◽  
Daniel Trainer ◽  
Sung Jin Kim

The heat transfer and fluid flow characteristics of non-boiling two-phase flow in microchannels were experimentally investigated. The effects of channel diameter (140, 222, 334, and 506 μm) on the Nusselt number were considered. Air and water were used as the working fluids. Results were presented for the Nusselt number over a wide range of gas superficial velocity (1.24–40.1 m/s), liquid superficial velocity (0.57–2.13 m/s), and wall heat flux (0.34–0.95 MW/m2). The results showed that the Nusselt number increased with increasing gas flow rate for the 506 μm and 334 μm channels, while the Nusselt number decreased with increasing gas flow for the 222 μm and 140 μm channels. Based on these experimental results, a transition channel diameter of about 235 μm to 260 μm, which distinguishes microchannels from minichannels, was suggested. By observing two-phase flow patterns within the microchannels, viscosity and surface tension were identified as the key factors that caused the heat transfer characteristics to change. In addition, new correlations for the forced convection Nusselt number were developed.


Author(s):  
Xin-Rong Zhang ◽  
Hiroshi Yamaguchi

From the viewpoint of protecting the ozone layer and preventing global warming, there is now strong demand for science and technology based on ecologically safe ‘natural’ working fluids. A CO2 refrigeration method has been proposed and developed several years ago, using CO2 solid-gas two phase fluid as refrigerant. Heat transfer of the CO2 solid-gas two phase flow in a horizontal tube is important to design of such a refrigeration system. In the present paper, an experiment work is conducted to measure its heat transfer characteristics in the horizontal tube. The results show an average value 310 W/(m2-K) of heat convective coefficient is experimentally obtained, which is much higher than that of gas flow. In the sublimation area, the Nusselt number is observed to increase slowly along the tube length, the phenomena may be physically explained that the sublimation process changes the thermal boundary layer thickness; makes the flow turbulence stronger; or changes the flow and the pressure fields.


Author(s):  
Antonin Povolny ◽  
Hiroshige Kikura

Two-phase liquid-gas flow occurs in many safety systems of nuclear reactors as well as in reactor cores. To further improve both safety and commercial performance of nuclear reactors, it is important to improve numerical codes and deepen the understanding of two-phase flow with experiments on gas behaviour in liquids. Among several available measurement methods, ultrasound based methods are affordable and easy to use even for high pressure/temperature flows in non-transparent pipes. Ultrasound Reflector Recognition and Tracking Technique (URRTT) has been developed as a new technique. It uses an ultrasound transducer, which emits ultrasound beam into the liquid with gas bubbles. The phase interface reflects the beam and because of that, the phase interface can be recognised in the reflected signal and the distance (from the transducer) can be calculated. The core of this technique is the tracking algorithm that can separate data of different bubbles from each other and obtain their one dimensional trajectories along the measurement line. Trajectories measured simultaneously by more transducers (at different positions or from different directions) can be combined. That means trajectory of the bubble interface from one transducer can be connected to trajectory from a different transducer and by doing so, a secondary data can be obtained using the information that those trajectories belong to the same bubble. As an example, the average two dimensional velocity between two parallel measurement lines can be obtained. Another example is the measurement of the bubble size using one measurement line with two oppositely oriented transducers. Experiments have been conducted to prove the concept of URRTT. Results have been validated to data obtained by the image processing of footage taken by a high speed camera. The results obtained by URRTT can be of high value since each detected bubble is measured individually and thus, difference in the bubble behaviour based on the size, velocity or history of the bubble can be described.


Author(s):  
Alexandru Herescu ◽  
Jeffrey S. Allen

Recent research efforts have illustrated the importance of capillarity on the behavior of two-phase flow (gas-liquid) in low Bond number systems; that is, systems where capillary forces are important relative to gravitational forces. Such systems include capillary tubes and microchannels as well as the gas flow channels of a PEM fuel cell. High speed microscopy experiments visualizing air-water flow through a 500 micrometer square glass capillary, 10 cm long were conducted. The flow rates are significant with velocities of 6.2 m/s for the air and 0.2 m/s for the water. A unique annular flow with periodic destabilization of the gas-liquid interface has been observed. Standing waves develop on the liquid film and grow into annular lobes typical of that observed in low speed two-phase flow in capillary tubes. Atypical is the interface destabilization phenomena. The leading face of the lobe will decelerate and suddenly become normal to the wall of the square capillary while the trailing face of the lobe will remain gently sloped back into the annular liquid film. The transition between the leading and trailing faces acquires a sharp edge having a exceptionally large curvature. The entire structure then rapidly collapses and produces travelling waves which propagate upstream and downstream along the annular liquid film. The entire sequence of events takes approximately a half millisecond. This destabilization phenomenon is regular and periodic. Visualization of the destabilization from the high speed microscopy setup and preliminary analysis are presented.


Author(s):  
S. A. Nada

This article reports on the experimental investigation of heat transfer to cocurrent air–water two-phase flow in a horizontal tube. The idea is to enhance heat transfer to the coolant liquid by air injection. Experiments were conducted for different air water ratios in constant temperature heated tube. Visual identification of flow regimes was supplemented. The effects of the liquid and gas superficial velocities and the flow regimes on the heat transfer coefficients were investigated. The results showed that the heat transfer coefficient generally increases with the increase of the injected air flow rate, and the enhancement is more significant at low water flow rates. A maximum value of the two-phase heat transfer coefficient was observed at the transition to wavy-annular flow as the air superficial Reynolds number increases for a fixed water flow rate. It was noticed that the Nusselt number increased about three times due to the injection of air at low water Reynolds number. Correlations for heat transfer by air–water two-phase flow were deduced in dimensionless form for different flow regimes.


Author(s):  
Carlos E. F. do Amaral ◽  
O´liver B. S. Scorsim ◽  
Eduardo N. Santos ◽  
Marco Jose´ da Silva ◽  
Marco Germano Conte ◽  
...  

Two phase flow occurs in many industrial applications, mainly in the transport of mixtures. Many patterns can be produced according to the liquid and gas flow rates. The identification of these patterns is very important in the design of piping systems and equipments. This work proposes an experimental study to identify multiphase flow patterns of water and air in horizontal pipes. The study was developed using an experimental circuit of 26 mm diameter and 9.2 m length pipe, at Thermal Sciences Lab (LACIT) at the Federal University of Technology - Parana´. To characterize the flow patterns, an intrusive mesh electrodes sensor was used, which allows the detailed visualization of the phases distribution. Tests were made using several experimental settings of water and gas flow rates. Measurements were compared to images obtained by high speed camera and the temporal void fraction series which were analyzed with the use of PDF and PSD functions, showing the singularities for each two-phase flow pattern.


Sign in / Sign up

Export Citation Format

Share Document