scholarly journals Expansive soil improvement of Glagahagung village, Purwoharjo sub-district, Banyuwangi district, which is chemically stabilized

2018 ◽  
Vol 195 ◽  
pp. 03009
Author(s):  
Paksitya Purnama Putra ◽  
Diah Ayu Paramiswari ◽  
Abdullah Ilham ◽  
M. Farid Ma’ruf

Expansive soil can be easily found at Purwoharjo, a sub-district of Banyuwangi. Swelling and shrinkage behavior of the soil is usually referred to by the local community as a “moving soil” phenomenon. It causes cracks on a number of buildings which is a major issue in that area. Various methods of expansive soil stabilization are available. This work intends to lay comparisons on stabilizations using wood charcoal powder and salt. The stabilizing materials are mixed with the soils under different proportion. Volume weight, index properties, and dry density are parameters to be investigated during the stabilization process. The results show that salt stabilized expansive soil is better than wood charcoal powder. 15% proportion of salt to soils weight increases the density by about 20%. Meanwhile, the stabilized soil is as a result of change to low plasticity silt (ML) from previously high plasticity soil (CH) of the original one.

2019 ◽  
Vol 5 (9) ◽  
pp. 1893-1903 ◽  
Author(s):  
Jayaprakash Reddy Joga ◽  
B.J.S. Varaprasad

In this study, Biopolymers are used as an attempt to create sustainable environment by eliminating the negative environmental impacts of using traditional admixtures in soil stabilization. Xanthan Gum is used as a biopolymer to treat expansive soil. A series of tests like, Standard Proctor Test, Unconfined Compressive Strength (UCS), One-Dimensional Consolidation and Standard Direct Shear tests were conducted on virgin soil and biopolymer (0, 0.5, 1, 1.5, 2, 2.5%) treated soils. The results revels that by addition of biopolymer content Maximum Dry Density (MDD) of soil decreases and Optimum Water Content (OMC) increases. The UCS value is increased by 4 times for the addition of 1% xanthan gum to soil for 28 day curing period. Compressibility of soil is deceased by 65% for 28day curing period. Shear parameters of treated soil shows improvement with addition of xanthan gum content. For further examination, SEM analyses were conducted on the tested samples and revealed that the soil fabric had white lumps and pores in the soil structure were filled with cementitious gel. Moreover, the resistance towards shear and compressibility of treated samples increased with curing times. Therefore, use of Xanthan Gum for soil stabilization is a solution for eco-friendly soil stabilizing material.


2021 ◽  
Vol 6 (2) ◽  
pp. 044-050
Author(s):  
Tsion Mindaye ◽  
Emer Tucay Quezon ◽  
Temesgen Ayna

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


2020 ◽  
Vol 63 (3) ◽  
pp. 13-20
Author(s):  
Jijo James ◽  
Priya Jothi ◽  
P. Karthika ◽  
S. Kokila ◽  
V. Vidyasagar

The investigation focussed on the possibility of replacing lime in soil stabilization using Egg Shell Ash (ESA), a waste derived from poultry industry. An expansive soil was characterized for its properties in the lab. The minimum lime content required for modification of soil properties was determined from the Eades and Grim pH test. This lime content came out to be 3%. The lime content was replaced using ESA in the proportions of 33%, 50%, 67% and 100%. Unconfined compression test specimens of dimension 38 mm x 76 mm were cast for different combinations and were cured for periods of 3, 7 and 28 days. Samples were also subjected to 1, 3 and 5 cycles of wetting and drying to understand its durability. After the designated curing periods and cycles of wetting and drying, they were strained axially till failure. Atterberg limits tests were done to determine the plasticity of the stabilized soil. The strength results indicated that ESA cannot be used under normal conditions as a replacement for lime, however, ESA replacement resulted in good durability of the specimens under conditions of wetting and drying. It was concluded that ESA replacement of lime can be adopted in conditions of wetting and drying.


2021 ◽  
Vol 64 (2) ◽  
pp. 81-91
Author(s):  
Jijo James ◽  
Anupriya Natesan ◽  
Aswini Manohar ◽  
Vishvaa Subramanian

Cement/lime stabilization of soils is one of the common techniques adopted for improving its geotechnical properties. Lately, the focus of investigation has shifted to blended stabilization with industrial wastes as auxiliary additives. However, the role of blended cement in stabilization of soil has been studied insufficiently despite the fact that it is manufactured under controlled conditions. This investigation deals with the use of Portland pozzolana cement (PPC) instead of ordinary Portland cement (OPC) in the stabilization of an expansive soil subjected to alternate cycles of wetting and drying. Unconfined compression strength (UCS) test specimens of dimensions 38mm x 76mm were cast and cured for periods of 7, 14 and 21 days. Then, the specimens were subjected to 1, 2 and 3 cycles of wetting and drying and the UCS of the specimens were determined. Based on the results of the investigation, it was found that OPC performed significantly better than PPC under normal conditions. However, under conditions of wetting and drying, PPC stabilized soil performed much better than OPC stabilized soil when sufficient binder content was available.


2020 ◽  
Vol 26 (7) ◽  
pp. 158-174
Author(s):  
Safin B. Saeed ◽  
Kamal Ahmad Rashed

Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the swelling potential of the expansive soil reduced and dramatic increases in unconfined compressive strength (UCS) value up to 3 times of its original value was reported. The results indicate that CDW is an economical solution to be used in soil stabilization whereas it is a sustainable idea to recycle constructional wastes and solve the continued need for the more landfilling area.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Paksitya Purnama Putra ◽  
Mokhammad Farid Ma'ruf ◽  
Muhammad Ari Ridwansyah ◽  
Rendra Kurniawan ◽  
Celia Nindy Carisa

Expansive soil has a high swelling and shrinkage ability which can damage the buildings above it. Glagahagung Village, Purwoharjo District, Banyuwangi Regency is one of the areas suspected of having this type of soil. Residents often experience problems in their residential buildings every year, such as cracks in floors, walls, columns, and beams. Several methods can be used to improve expansive soil, including physical and mechanical stabilization. In this study, lime and cement were used as physical stabilizers. On the other hand, sand is used as a mechanical stabilizer. Physical and mechanical parameters will be observed in the stabilization process. Based on the three stabilizers, a 5% cement mixture can be the best alternative. Cement stabilizers can increase the maximum dry volume weight, reduce the rate of soil swelling, and change natural soils' classification from high plasticity clay to silty sand.


2019 ◽  
Vol 803 ◽  
pp. 331-337 ◽  
Author(s):  
Hengchhorn Phai ◽  
Amin Eisazadeh

Bangkok clay (BC) is notorious for its poor engineering properties in Thailand and world-widely. In terms of workability, it is significant to modify its naturally weak properties. Nowadays, humans are overusing Earth’s resources and generating so much waste. In consequence, eco-friendly and cost cutting improvements are appreciated in geotechnical field. At the same time, Rice Husk Ash (RHA) is a cheap potential material for soil improvement. Lime is also known as a common material used in soil stabilization both solely and mixed with other materials. An inevitable step to every soil stabilization is to perform compaction tests that gives basic notions to treat soil. In this experimental study, compaction tests were proceeded with soil mixed with 0%, 10%, 20%, 30%, 50% of Rice Husk Ash (RHA) by dry soil mass in replacement manner and added 0%, 4%, 8%, 12% of lime. Overall, the more RHA and lime amount is mixed with soil, the higher Optimum Moisture Content (OMC) gets. This means that when replacement/stabilizers are added more and more, the soil needs more water to reach its Maximum Dry Density (MDD). Unlike OMC, MDD reduces when quantity of additives is increased.


2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Aminaton Marto ◽  
Sanjay Boss ◽  
Ahmad Mahir Makhtar ◽  
Nima Latifi

Kaolin deposits are considered to have poor engineering characteristics, exhibiting expansive properties, high plasticity, poor workability, and low shear strength. This may cause severe damage to civil engineering structures and facilities. Hence, these soils must be treated prior to construction operations, so that desired properties can be achieved. SS 299 is a liquid polymer stabilizers used as a compaction aid or a stabilizer for soil improvement. Yet, it is not used as a common approach when comes to soil stabilization due to its uncertainties in strength improvement when mixed with soils. As a result, laboratory testing programs were conducted to study the strength development of brown kaolin when treated with the liquid polymer with 3 %, 6 %, 9 %, 12 % and 15 % of soil’s dry mass. The result indicated that the increase in the percentage of SS 299, increases the unconfined compression strength. The maximum value of the unconfined compressive strength of 385 kPa was observed at 15 % SS 299 content, cured at 28 days, which was twice the strength of the untreated brown kaolin. The increment of strength was really steep for the first 7 days but the rate decreased thereafter. The optimum content of liquid polymer SS 299 was found as 12 %.


2021 ◽  
Author(s):  
Emer Tucay Quezon ◽  
Tsion Mindaye

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


2021 ◽  
Vol 878 (1) ◽  
pp. 012050
Author(s):  
R P W Gultom ◽  
R M Simanjuntak

Abstract Expansive clay soils are high shrinkage soils that have low bearing capacity. So an effort is needed to reduce the nature of its swelling. One effort that can be done is the method of soil stabilization, where the soil is mixed with materials that can reduce soil swelling and increase the shear strength of the soil. One of the materials that can be used is kaolin powder. Kaolin is a stabilizing agent found in nature so it is easy to obtain. The purpose of this research is to analyse the decrease of expansive soil swelling and the value of its unconfined compression strength at various soaking times. The test was carried out by mixing 9% kaolin powder against dry soil weight. The stabilized soils were then compacted as samples to be soaked with time variations of 0 days, 3 days, 7 days, 10 days, and 14 days. The results of the test after soaking 14 days is a decrease of the stabilized soil swelling value up to 67.78%. The unconfined compression strength is increase up to 77.28% compared to its natural condition.


Sign in / Sign up

Export Citation Format

Share Document