scholarly journals Tip-timing analysis of last stage steam turbine mistuned bladed disc during run-down

2018 ◽  
Vol 211 ◽  
pp. 03003
Author(s):  
Romuald Rzadkowski ◽  
Leszek Kubitz ◽  
Michał Maziarz ◽  
Pawel Troka ◽  
Leszek Piechowski ◽  
...  

This paper presents the experimental and numerical studies of last stage LP mistuned steam turbine bladed discs during run-down. The natural frequencies and mode shapes of the turbine bladed disc were calculated using an FE model. The influence of shaft was considered. The tip-timing method was used to find the mistuned bladed disc modes and frequencies. The numerical results were compared with experimental ones.

2019 ◽  
Vol 8 (3) ◽  
pp. 409-415 ◽  
Author(s):  
Romuald Rzadkowski ◽  
Leszek Kubitz ◽  
Michał Maziarz ◽  
Pawel Troka ◽  
Krzysztof Dominiczak ◽  
...  

Abstract Background This paper presents the experimental and numerical studies of last-stage low-pressure (LP) mistuned steam turbine bladed discs during run-down. Methods The natural frequencies and mode shapes of the turbine bladed disc were calculated using an FE model. The influence of the shaft on the modal properties, such as natural frequencies and mode shapes, was considered. The tip-timing method was used to find the mistuned bladed disc modes and frequencies. Conclusions The experimental results from the tip-timing analysis show that the mistuning in combination with shaft coupling suppresses pure nodal diameter type blade vibrations associated with the fundamental mode shape of a cantilevered blade. Vibration modes emerge when even a single blade is vibrating due to the well-known mode localization caused by mistuning. The numerical results confirm this.


Author(s):  
Romuald Rzadkowski ◽  
Artur Maurin ◽  
Leszek Kubitz ◽  
Ryszard Szczepanik

During the exploitation of a commercial LP steam turbine, self-excitation occurred in the last stage of slender blades, inducing high vibration amplitudes. These problems were solved by changing the geometry of certain blades (feathering) and arranging them in a specific order (alternating mistuning). This paper presents free and forced vibrations of various mistuned steam turbine bladed discs. The natural frequencies and mode shapes of the steam turbine bladed discs were calculated using FEM models. Two different approaches to mistuning were applied: either the blade geometry or the Young’s Modulus were changed. Next, the results were compared. This showed that blade geometry mistuning gave the best results for long blades in the case of higher mistuning. The forced vibration analysis showed that the maximal blade stress location differed, depending on the kind of mistuning. The application feathering and alternating mistuning showed lower stress levels than the tip-timing measured standard mistuning pattern.


Author(s):  
Marcin Drewczynski ◽  
Romuald Rzadkowski ◽  
Artur Maurin ◽  
Piotr Marszalek

The design of blades in the last stage of a steam turbine is one of the most demanding engineering tasks in the turbomachinery field. Increasing turbine efficiency has led to the designing of higher tip-to-hub ratios. Slender blading conforms to reliability requirements, such as high blade stiffness and a high first mode natural frequency. Several high vibration amplitude problems were reported regarding a slender last stage blading of a commercial low-pressure steam turbine. During maintenance it was decided that the blades would be geometrically mistuned to prevent self-excitation. This paper presents a numerical study of LP steam turbine last stage bladed disk mistuning. Two different approaches to mistuning were applied and numerically compared: geometrical and material. The mode shapes and natural frequencies of the steam turbine bladed disk were calculated on the basis of an FEM model. The smallest range of mistuning (0,5Hz) in a bladed disk contaminates nodal diameters up to the fourth series. This should be taken into account when tip-timing method is adapted for steam turbine operation monitoring.


2012 ◽  
Vol 19 (4) ◽  
pp. 679-692 ◽  
Author(s):  
Sudip Dey ◽  
Amit Karmakar

Location of delamination is a triggering parameter for structural instability of laminated composites. In this paper, a finite element method is employed to determine the effects of location of delamination on free vibration characteristics of graphite-epoxy cross-ply composite pre-twisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting Coriolis effect for moderate rotational speeds. The formulation is exercised by using an eight noded isoparametric plate bending element based on Mindlin's theory. Multi-point constraint algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Finite element codes are developed to obtain the numerical results concerning the effects of location of delamination, twist angle and rotational speed on the natural frequencies of cross-ply composite shallow conical shells. The mode shapes are also depicted for a typical laminate configuration. Numerical results obtained from parametric studies of both symmetric and anti-symmetric cross-ply laminates are the first known non-dimensional natural frequencies for the type of analyses carried out here.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
J. S. Kim ◽  
Y. F. Xu ◽  
W. D. Zhu

Abstract Riveted connections are widely used to join basic components, such as beams and panels, for engineering structures. However, accurately modeling joined structures with riveted connections can be a challenging task. In this work, an accurate linear finite element (FE) modeling method is proposed for joined structures with riveted connections to estimate modal parameters in a predictive manner. The proposed FE modeling method consists of two steps. The first step is to develop nonlinear FE models that simulate riveting processes of solid rivets. The second step is to develop a linear FE model of a joined structure with the riveted connections simulated in the first step. The riveted connections are modeled using solid cylinders with dimensions and material properties obtained from the nonlinear FE models in the first step. An experimental investigation was conducted to study accuracy of the proposed linear FE modeling method. A joined structure with six riveted connections was prepared and tested. A linearity investigation was conducted to validate that the test structure could be considered to be linear. A linear FE model of the test structure was constructed using the proposed method. Natural frequencies and corresponding mode shapes of the test structure were measured and compared with those from the linear FE model. The maximum difference of the natural frequencies was 1.63% for the first 23 out-of-plane elastic modes, and modal assurance criterion values for the corresponding mode shapes were all over 95%, which indicates high accuracy of the proposed linear FE modeling method.


2011 ◽  
Vol 105-107 ◽  
pp. 689-694
Author(s):  
Pallab Das

In the present study, the modal parameters of cracked plain cement concrete beams have been studied theoretically. A crack in a beam element introduces considerable local flexibility, which has been expressed by local flexibility matrix, the dimension of which depends upon the numbers of degree of freedom considered. An approach based on linear fracture mechanics theory has been used to find flexibility matrix for the cracked element. The FEM program has been developed for eigen-value problems to determine the modal parameters of the cracked beams. Changes in natural frequencies and mode shapes between the damaged and intact beam have been observed. Numerical studies are performed by considering simply supported beam with single and multiple cracks at different locations with different crack depths.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
J. Felipe Vásquez-Arango ◽  
Reiner Buck ◽  
Robert Pitz-Paal

An experimental and numerical modal analysis was performed on an 8 m2 T-shaped heliostat structure at different elevation angles. The experimental results were used to validate a finite element (FE) model by comparing natural frequencies and mode shapes. The agreement between experiments and simulations is good in all operating points investigated. In addition, damping coefficients were determined experimentally for each mode, in order to provide all necessary information for the development of a dynamic model. Furthermore, potentially critical operating conditions caused by vortex shedding were identified using a simple approach.


Author(s):  
Zhangming Wu ◽  
Xianghong Ma ◽  
Peter N Brett ◽  
Jinwu Xu

This paper investigates the vibration characteristics of the coupling system of a microscale fluid-loaded rectangular isotropic plate attached to a uniformly distributed mass. Previous literature has, respectively, studied the changes in the plate vibration induced by an acoustic field or by the attached mass loading. This paper investigates the issue of involving these two types of loading simultaneously. Based on Lamb's assumption of the fluid-loaded structure and the Rayleigh–Ritz energy method, this paper presents an analytical solution for the natural frequencies and mode shapes of the coupling system. Numerical results for microplates with different types of boundary conditions have also been obtained and compared with experimental and numerical results from previous literature. The theoretical model and novel analytical solution are of particular interest in the design of microplate-based biosensing devices.


1991 ◽  
Vol 113 (3) ◽  
pp. 250-257 ◽  
Author(s):  
J. M. Pitarresi ◽  
D. V. Caletka ◽  
R. Caldwell ◽  
D. E. Smith

The primary objective of this paper is to investigate the accuracy of the finite element (FE) smeared properties approach for the determination of the mode shapes and frequencies of a printed wiring board (PWB) populated with electronic modules. Smearing of the material and/or structural properties is a recognized means of reducing a complicated structure to a less complicated approximation. Comparisons of both the natural frequencies and mode shapes are made between the smeared FE model and those obtained from vibration testing. The extent of correlation between the mode shapes is characterized by the modal assurance criterion (MAC). Since the intent of this study is to examine the effectiveness of the smearing technique, free boundary conditions are assumed. It is shown that the smearing technique can produce good correlation of both natural frequencies and mode shapes of PWBs populated with modules. A case study of a PWB with both surface mount technology (SMT) and pin-in-hole (PIH) components is presented.


2000 ◽  
Vol 123 (2) ◽  
pp. 188-197 ◽  
Author(s):  
Kenji Hosokawa ◽  
Minehiro Murayama ◽  
Toshiyuki Sakata

In a previous paper, the authors proposed a numerical approach for analyzing the free vibrations of a laminated FRP (fiber reinforced plastic) composite plate. In the present paper, this approach is modified for application to a symmetrically laminated shallow cylindrical shell having a rectangular planform. First, the natural frequencies of the shell are calculated for discussion of the convergence and accuracy of the solution. Next, the effects of the curvature ratio and stacking sequence on the natural frequencies and mode shapes of the shell are studied. Furthermore, to justify the numerical results, vibration tests of the clamped symmetrically laminated shallow cylindrical shell having a square planform are carried out. These experimental results are found to agree well with the numerical results computed using the measured material properties of the lamina.


Sign in / Sign up

Export Citation Format

Share Document