Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
J. Felipe Vásquez-Arango ◽  
Reiner Buck ◽  
Robert Pitz-Paal

An experimental and numerical modal analysis was performed on an 8 m2 T-shaped heliostat structure at different elevation angles. The experimental results were used to validate a finite element (FE) model by comparing natural frequencies and mode shapes. The agreement between experiments and simulations is good in all operating points investigated. In addition, damping coefficients were determined experimentally for each mode, in order to provide all necessary information for the development of a dynamic model. Furthermore, potentially critical operating conditions caused by vortex shedding were identified using a simple approach.

Author(s):  
Shenshun Ying ◽  
Shiming Ji ◽  
Yangyu Wang ◽  
Zhixin Li ◽  
Lvgao Lin ◽  
...  

Dynamic properties of the whole broaching machine structure greatly contribute to the broaching quality and efficiency. However, it is hard to measure the dynamic parameters because they will change during operation compared with the static results from classic experimental modal analysis. This study is to examine the dynamic parameters of broaching machine LG7120KT using both the numerical finite element (FE) method and the experimental operational modal analysis (OMA). Firstly, FE analysis model of the broaching machine with the real dimension is constructed and calculated. Second, experimental results are obtained from OMA in practical broaching process, which can be used to identify steady-state modes. Modal parameters including mode shapes, damping ratio, and natural frequencies are examined, using both LMS SCADAS III-305 system and PolyMAX method in OMA. The numerical and experimental results show high agreement in their calculated natural frequencies. From the modal analysis results, it is also found the vibration normal to cutting direction can be greatly reduced by adjusting broaching speed. From the topology optimization result based on the already correlated FE model, we redesigned a lightweight machine structure with a better dynamic performance, due to its lower displacement of broaching machine at force point and its higher first-order natural frequency. The experimental and numerical results in this paper help to design the structural parameters of broaching machine and propose a better broaching process.


2019 ◽  
Vol 8 (4) ◽  
pp. 12294-12300

In isolating the ground structure and the above ground structure from seismic loads, a significant device called laminated rubber bearing is usually found in structure. The complexity of the material which is made up from a combination of rubber and steel shim plates in alternate layer, has made it difficult to measure damping value. Damping is a dissipation of energy or energy losses in the vibration of the structure. Measuring the accurate amount of damping is fundamental as damping plays a crucial role in fixing the borderline between stability and instability in structural systems. Therefore, to determine the damping value including dynamic properties in any materials, modal analysis can be used. Hence, the main objective of this research is to determine the Rayleigh’s damping coefficients α and β and to evaluate the performance of the laminated rubber bearing using finite element and experimental modal analysis. Finding shows that, the finite element modal analysis with the addition of Rayleigh’s damping coefficients α and β, shows a good agreement with the experimental modal analysis in term of natural frequencies and mode shapes. Findings show that, the values of natural frequencies reduced when precise Rayleigh’s damping coefficient added in the finite element modal analysis. It can be concluded that both finite element and experimental modal analysis method can be used to estimate the accurate values of damping ratio and to determine the Rayleigh’s damping coefficients α and β as well.


2015 ◽  
Vol 76 (8) ◽  
Author(s):  
A. I. Yusuf ◽  
M. A. Norliyati ◽  
M. A. Yunus ◽  
M. N. Abdul Rani

Elastomeric bearing is a significant device in structures such as in bridges and buildings. It is used to isolate the ground structure (substructure) and the above ground structure (superstructure) from seismic loads such as earthquake load. Understanding the dynamic behavior of the elastomeric bearing in terms of natural frequencies, mode shapes and damping are increasingly important especially in improving the design and the failure limit of the elastomeric bearing. Modal analysis is one of the methods used to determine the dynamic properties of any materials. Hence, the main objective of this research is to determine the dynamic properties of elastomeric bearing components in terms of natural frequencies, mode shapes, and damping via numerical and experimental modal analysis. This method had been successfully performed in investigating the dynamic behavior of rubber and steel shim plate.


2014 ◽  
Vol 58 (04) ◽  
pp. 216-224 ◽  
Author(s):  
Esben Orlowitz ◽  
Anders Brandt

The dynamic characteristics of ship structures are becoming more important as the flexibility of modern ships increases, for example, to predict reliable design life. This requires an accurate dynamic model of the structure, which, because of complex vibration environment and complex boundary conditions, can only be validated by measurements. In the present paper the use of operational modal analysis (OMA) for dynamic characterization of a ship structure based on experimental data, from a full-scale measurement of a 210-m long Ro-Lo ship during sea trial, is presented. The measurements contain three different data sets obtained under different operating conditions of the ship: 10 knots cruising speed, 18 knots cruising speed, and at anchor. Natural frequencies, modal damping ratios, and mode shapes have been successfully estimated for the first 10 global modes. Damping ratios for the current ship were found within the range 0.9%–1.9% and natural frequencies were found to range from 0.8 to 4.1 Hz for the first 10 global modes of the ship at design speed (18 knots). The three different operating conditions showed, in addition, a speed dependency of the natural frequencies and damping ratios. The natural frequencies were found to be lower for the 18-knots condition compared with the two other conditions, most significantly for the vertical bending modes. Also, for the vertical bending modes, the damping ratios increased by 28%–288% when the speed increased from 10 to 18 knots. Other modes were not found to have the same strong speed dependency.


2020 ◽  
Vol 2 (5) ◽  
Author(s):  
Md. Hafizur Rahman ◽  
Chhavi Gupta

Abstract The dynamic behaviors of the submerged floating tunnel, a buoyant structure of high slenderness, are a matter of concern since it is surrounded by the huge hazardous effects called hydrodynamic, seismic and functional action. Modal analysis and Rayleigh damping coefficients play a significant role in dynamic analysis, but it is not sufficiently simple to predict the reasonable damping coefficients named α and β. The present paper outlines the modal analysis and the calculation of Rayleigh damping coefficients that provide the natural frequencies, mode shapes, mode’s motion as well as coefficients α and β. To compute the Rayleigh damping coefficients, 2–10% damping to the critical damping has been assumed for this analytical study. For the analysis, an FEA-based software ANSYS is utilized successfully. It has been seen that the fundamental frequency and Rayleigh damping coefficients (α = 0.946 and β = 0.00022) of the SFT are reasonably high and it is under noticeable damping.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Ercan ◽  
A. Nuhoglu

This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed.


2007 ◽  
Vol 353-358 ◽  
pp. 1195-1198 ◽  
Author(s):  
Y.B. Chen ◽  
J.G. Han ◽  
D.Q. Yang

Structural operating conditions may significantly differ from those applied during laboratory tests where the structure is well known, well installed and properly excited. For structures under their natural loading conditions, or excited by random forces, excitations cannot be measured and are usually non stationary. Hence, an improvement operational modal analysis is a useful complement to the traditional modal analysis approach. The aim of this paper is to present the application of a new identification procedure, named wavelet-based identification technique of structural modal parameters. Wavelet-based identification that works in time-frequency domain is used to identify the dynamic characteristics of the structural system in terms of natural frequencies, damping coefficients and mode shapes. The paper has shown how the amplitude and the phase of the wavelet transform of operational vibration measurements are related to eigenfrequencies and damping coefficients, and the wavelet-based spectrum analysis is used to identify the mode shapes of the structure. Those modal parameters can be used to detect damage of structures. A simulation example has demonstrated that current identified results are comparable with those previously obtained from the peak pick method in frequency domain and stochastic subspace identification in time domain.


2015 ◽  
Vol 1094 ◽  
pp. 469-474
Author(s):  
Yu Jing He ◽  
Jiang Feng Shen ◽  
Xiang Fu Li

The author designed a intelligential spray car of fruit tree, this support frame of worktable support the whole spraying arm in the course, its dynamic properties is important to determine the product quality and life. On the basis of three-dimensional modeling, The modal of dynamic that support frame was analysis and the first ten modal parameters (natural frequencies and mode shapes) was calculated by using ANSYS finite element of analysis software. Compared with Modal parameters by method and experimental modal analysis obtained, summarizes the higher modes of dynamic structure, and proposed modifications for the structure.


2016 ◽  
Vol 827 ◽  
pp. 263-266
Author(s):  
Vladimír Sana

This paper is focused on the assessment of serviceability of the footbridge structure, which has been excited by pedestrians and vandals. The three dimensional FE model of the footbridge structure was created for the necessities of theoretical modal analysis. Computed mode shapes and natural frequencies were subsequently used for the forced vibration analysis as an input files into MATLAB code. Results obtained by the theoretical analysis were compared with the experimental results. At the end of this paper, the comfort criterion of crossing pedestrians has been evaluated.


2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


Sign in / Sign up

Export Citation Format

Share Document