scholarly journals Investigation of laser heat treated Monel 400

2018 ◽  
Vol 219 ◽  
pp. 02005 ◽  
Author(s):  
Mateusz Kukliński ◽  
Aneta Bartkowska ◽  
Damian Przestacki

In this research, Monel metal was laser heat-treated for microstructural, microhardness and roughness investigation. The treatment is an initial stage for welding Monel without additional material for structural elements. The treatment was carried out with diode laser TruDiode 3006 which allows to reach a power of 3 kW. The material was treated with a constant laser beam power, equal to 1400 W, and four different laser beam velocities: 5, 25, 50 and 75 m/min. The distance between single laser tracks was 0,5 mm in every experimental series. It was found that laser heat treatment of Monel does not influence its hardness. The depth of melted areas is decreasing with an increasing laser beam velocity. The melted area manufactured with laser beam velocity equal to 5 m/min is about 350 μm. Increasing the laser beam velocity to 75 m/min causes depth reduction to about 100 μm. The melted areas are built with column crystals oriented in the direction of heat dissipation perpendicular to the heating direction.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3494 ◽  
Author(s):  
Mateusz Kuklinski ◽  
Aneta Bartkowska ◽  
Damian Przestacki

In this study, Monel 400 is laser heat treated and laser alloyed with boron using diode laser to obtain adequate remelting and to improve the microhardness Single laser tracks were produced on the surface with three different laser beam scanning velocities: 5, 25, and 75 m/min. In order to enrich Monel 400 with boron surfaces were covered with initial layers of two different thicknesses before the process: 100 μm and 200 μm. In all experiments, laser beam power density was equal to 178 kW/cm2. Produced laser tracks were investigated in areas of microstructure, depth of remelting and microhardness. It was found that remelted zones are mainly composed of dendrites and the more boron is present in the laser track, the dendritic structure more fragmented is. Depth of remelting and microhardness depend not only on the laser beam scanning velocity but also on thickness of the initial boron layer. While microhardness of Monel 400 is equal to approximately 160 HV0.1, microhardness up to 980 HV0.1 was obtained in areas laser alloyed with boron.


2018 ◽  
Vol 237 ◽  
pp. 02009 ◽  
Author(s):  
Damian Przestacki ◽  
Aneta Bartkowska ◽  
Mateusz Kukliński ◽  
Piotr Kieruj

In this study a stainless austenitic steel 1.4550 was laser heat treated with diode laser. The influence a gouache coating on remelted steel substrate was carry out. The cooling system during laser melted was analysis as well. Melted layers were manufactured with different laser beam power between 0.6 kW and 1.4 kW, constant scanning laser beam speed vl = 5.76 m/min and laser beam diameter equal dl = 1.2 mm. The surface was treated at room temperature and under CO2 cooling conditions and the results were compered. With the increase of the laser beam power, the dimensions of the laser tracks increase. The depth of laser tracks varies significantly than their width. The deepest melted layer was observed for a material that wasn’t coated by any of absorbent paste and when there wasn’t cooling system.


Author(s):  
D. Panfil ◽  
M. Kulka ◽  
P. Wach ◽  
J. Michalski

Purpose: The aim of this work was to study the microstructure and wear resistance of hybrid surface layers, produced by a controlled gas nitriding and laser modification. Design/methodology/approach: Nitriding is well-known method of thermo-chemical treatment, applied in order to produce surface layers of improved hardness and wear resistance. The phase composition and growth kinetics of the diffusion layer can be controlled using a gas nitriding with changeable nitriding potential. In this study, gas nitriding was carried out on 42CrMo4 steel at 570°C (843 K) for 4 hours using changeable nitriding potential in order to limit the thickness of porous e zone. Next, the nitrided layer was laser-modified using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as the multiple tracks with scanning rate vl=2.88 m/min and overlapping of about 86% using the two laser beam powers (P): 0.21 kW and 0.26 kW. Microstructure was observed by an optical microscope. Phase composition was studied using XRD. Hardness profiles in the produced hybrid layers was determined using a Vickers method. Wera resistance tests were performed using MBT-01 tester. Findings: Gas nitriding resulted in formation of compound zone, consisting of e nitrides close to the surface and a zone, composed of e + g' nitrides. Below the white compound zone, the diffusion zone occurred with nitric sorbite and precipitates of g' nitrides. In the microstructure after laser heat treatment (LHT) of nitrided layer, the zones were observed as follows: the re-melted zone (MZ) with e nitrides, nitric martensite and non-equilibrium FeN0.056 phase, the heat-affected zone (HAZ) with nitric martensite and precipitates of g' phase and the diffusion zone (DZ) without visible effect of laser treatment. Laser beam power influenced the depth of MZ and HAZ, so the thickness of hardened zone. The hardness of MZ was slightly decreased compared to the hardness of compound zone after gas nitriding. However, the significant increase in hardness was observed in HAZ. The formation of hybrid layers advantageously influenced the tribological properties. The laser-heat treated nitrided layers were characterized by improved wear resistance compared to the only gas-nitrided layer. Research limitations/implications: The effect of LHT on the microstructure and properties of gas-nitrided layer was limited to the two laser beam powers. In the future research, this range should be exceeded, especially, taking into account the lower values of laser beam power. It will result in laser modification without re-melting. Practical implications: The selection of suitable LHT parameters could provide the hybrid layers of modified microstructure and improved wear resistance. Originality/value: This work was related to the new concept of modification of nitrided layer by laser heat treatment.


2016 ◽  
Vol 36 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Dominika Panfil ◽  
Piotr Wach ◽  
Michał Kulka ◽  
Jerzy Michalski

Abstract In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones


1982 ◽  
Vol 21 (13) ◽  
pp. 2432 ◽  
Author(s):  
U. Halavee ◽  
M. Tamir ◽  
E. Azoulay

Sign in / Sign up

Export Citation Format

Share Document