scholarly journals Impact of feature selection on system identification by means of NARX-SVM

2019 ◽  
Vol 252 ◽  
pp. 03012
Author(s):  
Michał Awtoniuk ◽  
Marcin Daniun ◽  
Kinga Sałat ◽  
Robert Sałat

Support Vector Machines (SVM) are widely used in many fields of science, including system identification. The selection of feature vector plays a crucial role in SVM-based model building process. In this paper, we investigate the influence of the selection of feature vector on model’s quality. We have built an SVM model with a non-linear ARX (NARX) structure. The modelled system had a SISO structure, i.e. one input signal and one output signal. The output signal was temperature, which was controlled by a Peltier module. The supply voltage of the Peltier module was the input signal. The system had a non-linear characteristic. We have evaluated the model’s quality by the fit index. The classical feature selection of SVM with NARX structure comes down to a choice of the length of the regressor vector. For SISO models, this vector is determined by two parameters: nu and ny. These parameters determine the number of past samples of input and output signals of the system used to form the vector of regressors. In the present research we have tested two methods of building the vector of regressors, one classic and one using custom regressors. The results show that the vector of regressors obtained by the classical method can be shortened while maintaining the acceptable quality of the model. By using custom regressors, the feature vector of SVM can be reduced, which means also the reduction in calculation time.

Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Hendra Saputra ◽  
Setio Basuki ◽  
Mahar Faiqurahman

AbstrakPertumbuhan Malware Android telah meningkat secara signifikan seiring dengan majunya jaman dan meninggkatnya keragaman teknik dalam pengembangan Android. Teknik Machine Learning adalah metode yang saat ini bisa kita gunakan dalam memodelkan pola fitur statis dan dinamis dari Malware Android. Dalam tingkat keakurasian dari klasifikasi jenis Malware peneliti menghubungkan antara fitur aplikasi dengan fitur yang dibutuhkan dari setiap jenis kategori Malware. Kategori jenis Malware yang digunakan merupakan jenis Malware yang banyak beredar saat ini. Untuk mengklasifikasi jenis Malware pada penelitian ini digunakan Support Vector Machine (SVM). Jenis SVM yang akan digunakan adalah class SVM one against one menggunakan Kernel RBF. Fitur yang akan dipakai dalam klasifikasi ini adalah Permission dan Broadcast Receiver. Untuk meningkatkan akurasi dari hasil klasifikasi pada penelitian ini digunakan metode Seleksi Fitur. Seleksi Fitur yang digunakan ialah Correlation-based Feature  Selection (CSF), Gain Ratio (GR) dan Chi-Square (CHI). Hasil dari Seleksi Fitur akan di evaluasi bersama dengan hasil yang tidak menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur CFS menghasilkan akurasi sebesar 90.83% , GR dan CHI sebesar 91.25% dan data yang tidak menggunakan Seleksi Fitur sebesar 91.67%. Hasil dari pengujian menunjukan bahwa Permission dan Broadcast Receiver bisa digunakan dalam mengklasifikasi jenis Malware, akan tetapi metode Seleksi Fitur yang digunakan mempunyai akurasi yang berada sedikit dibawah data yang tidak menggunakan Seleksi Fitur. Kata kunci: klasifikasi malware android, seleksi fitur, SVM dan multi class SVM one agains one  Abstract Android Malware has growth significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each types of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type wiil be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used are Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). Result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicate that permission and broadcast receiver can be used in classyfing type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection. Keywords: Classification Android Malware, Feature Selection, SVM and Multi Class SVM one against one


Author(s):  
Palani Thanaraj Krishnan ◽  
Joseph Raj Alex Noel ◽  
Vijayarajan Rajangam

AbstractEmotion recognition system from speech signal is a widely researched topic in the design of the Human–Computer Interface (HCI) models, since it provides insights into the mental states of human beings. Often, it is required to identify the emotional condition of the humans as cognitive feedback in the HCI. In this paper, an attempt to recognize seven emotional states from speech signals, known as sad, angry, disgust, happy, surprise, pleasant, and neutral sentiment, is investigated. The proposed method employs a non-linear signal quantifying method based on randomness measure, known as the entropy feature, for the detection of emotions. Initially, the speech signals are decomposed into Intrinsic Mode Function (IMF), where the IMF signals are divided into dominant frequency bands such as the high frequency, mid-frequency , and base frequency. The entropy measures are computed directly from the high-frequency band in the IMF domain. However, for the mid- and base-band frequencies, the IMFs are averaged and their entropy measures are computed. A feature vector is formed from the computed entropy measures incorporating the randomness feature for all the emotional signals. Then, the feature vector is used to train a few state-of-the-art classifiers, such as Linear Discriminant Analysis (LDA), Naïve Bayes, K-Nearest Neighbor, Support Vector Machine, Random Forest, and Gradient Boosting Machine. A tenfold cross-validation, performed on a publicly available Toronto Emotional Speech dataset, illustrates that the LDA classifier presents a peak balanced accuracy of 93.3%, F1 score of 87.9%, and an area under the curve value of 0.995 in the recognition of emotions from speech signals of native English speakers.


10.5772/38226 ◽  
2012 ◽  
Author(s):  
Mauridhi Hery ◽  
Diah P. ◽  
I. Ketut Eddy Purnama ◽  
Arif Muntas

Author(s):  
Pooja Rani ◽  
Rajneesh Kumar ◽  
Anurag Jain ◽  
Sunil Kumar Chawla

Machine learning has become an integral part of our life in today's world. Machine learning when applied to real-world applications suffers from the problem of high dimensional data. Data can have unnecessary and redundant features. These unnecessary features affect the performance of classification systems used in prediction. Selection of important features is the first step in developing any decision support system. In this paper, the authors have proposed a hybrid feature selection method GARFE by integrating GA (genetic algorithm) and RFE (recursive feature elimination) algorithms. Efficiency of proposed method is analyzed using support vector machine classifier on the scale of accuracy, sensitivity, specificity, precision, F-measure, and execution time parameters. Proposed GARFE method is also compared to eight other feature selection methods. Results demonstrate that the proposed GARFE method has increased the performance of classification systems by removing irrelevant and redundant features.


2011 ◽  
Vol 65 ◽  
pp. 218-223
Author(s):  
Ling Ping Jiang

In consideration of the problem in traditional aero-engine adaptive model, a new algorithm was proposed based on Recursive Reduced Least Squares Support Vector Regression (RRLSSVR). Feature Selection of model input and flight envelope divided was needed before the model established, then adaptive model was developed in every small envelope. Finally, an adaptive model was applied to validate the effectiveness and feasibility of the proposed feature selection algorithm and sparse model using RRLSSVR.


Sign in / Sign up

Export Citation Format

Share Document