scholarly journals Influence of elongation factor on distributions of effective strain and flow stress for pushing through a conical die process of round bars made from S355 steel

2019 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Tomasz Miłek

The paper presents computer modelling results of researches on pushing through a conical die process of round bars. Calculations were carried out using the commercial code QFORM-2D, based on the Finite Element Method (FEM). Investigations involved the use of circular sectioned S355 (1.0577) steel segments of rods with diameter of 9 mm and conical dies with different diameter of sizing portion of a die (d = 7.1 mm; 7.6 mm and 8.0 mm). The aim of the paper is to compare distributions of effective strain and flow stress in longitudinal sections of round bars at different elongation factors (λ1 = 1.24, λ2 = 1.37 and λ3 = 1.57).

2012 ◽  
Vol 445 ◽  
pp. 247-252
Author(s):  
Chin Tarn Kwan ◽  
Zhi Kai Chang

In this paper, the finite element method is used to investigate the effect of preform shapes on the strain hardening distribution in the wall of the extruded cup of backward extrusion. A series of simulations on the backward extrusion with three different preform shapes (flat, concave and convex) and without preform using the FEM program DEFORM 2D was carried out, respectively. The influence of preform shapes on the effective strain distribution in the extruded wall was examined. A hardness vs. effective strain curve for an annealed AL6061 Aluminum was first obtained using a simple forging test in conjunction with FE simulations, then the curve was used to convert the effective strain distribution into the hardness distribution in the extruded wall. The results of FEM calculations reveal that the concave shape preform has the best effect on the hardness strengthening at the extruded wall of backward extrusion.


Author(s):  
O.V. Voloshko Assistant, S. P. Vysloukh Ph.D. Assoc. Prof.

The advantages of using computer modelling for the study of the detail’s elastic-deformed state during the process of its operation are given. It is proposed to use the method of finite elements for such researches. It is shown that FEMAP is an effective software environment based on finite element analysis. An example of using the finite element method for modelling the detail’s elastic state operating in conditions of alternating loads is given. Наведено переваги використання комп’ютерного моделювання для дослідження пружно-деформований стан деталі в процесі її експлуатації. Запропоновано для таких досліджень використовувати метод скінченних елементів. Показано, що ефективним програмним середовищем, яке базується на кінцево-елементному аналізі, є система FEMAP. Наведена приклад використання методу скінченних елементів для моделювання пружного стану деталі, що працює в умовах знакозмінних навантажень.


2013 ◽  
Vol 479-480 ◽  
pp. 369-372
Author(s):  
Tung Sheng Yang ◽  
Li Hong Lai ◽  
Ji Hong Deng

This study applies the finite element method (FEM) to predict maximum forging load and effective strain in bevel gear forging. Maximum forging load and effective strain are determined for different process parameters, such as modules, number of teeth, and die temperature of the bevel gear forging, using the FEM. Finally, the prediction of the power requirement for the bevel gear warm forging is determined.


2011 ◽  
Vol 704-705 ◽  
pp. 1444-1450
Author(s):  
Liang Chu ◽  
Li Jun Shi ◽  
Yan Bi ◽  
Da Sen Bi

In this paper, the nosing process of metal tube with a conical die is investigated using the finite element method, and a series of simulations on the tube nosing process by using the program ABAQUS is carried out. The concrete process of tube nosing deformation is described. Some simulation results on tube nosing deformation such as the distributions of the Von Mises stress and effective strain, the material thickness variation of deformation zone are obtained and analyzed.


2013 ◽  
Vol 753-755 ◽  
pp. 253-256 ◽  
Author(s):  
Tung Sheng Yang ◽  
Cheng Chang ◽  
Sheng Yi Chang

This study applies the finite element method (FEM) to predict maximum forging load and effective strain in helical-bevel gear forging. Maximum forging load and effective strain are determined for different process parameters, such as modules, number of teeth, and die temperature of the helical bevel gear forging, using the FEM. Finally, the prediction of the power requirement for the helical-bevel gear warm forging is determined.


2010 ◽  
Vol 97-101 ◽  
pp. 1433-1437
Author(s):  
Xue Mei Liu ◽  
Zeng Da Zou ◽  
Xin Hong Wang ◽  
Shi Yao Qu

In friction surfacing process, the temperature field and strain field, especially of coating rod, is considered an important element in analyzing the process’ mechanism and choosing the key process parameters properly. In this paper, the finite element method was employed to simulate the coupling of 3-D temperature field and deformation field of coating rod during friction surfacing. The simulation results show that at the preliminary preheating period, the isotherm goes down at the center part, and the temperature field presents “M” along the radial direction. The temperature increasing rate at the friction interface is higher at first, and then become lower, once the friction system becomes quasi-steady, the temperature here will be stable approximately. The largest effective strain occurs near the center of bottom circle. The simulation results are close to the experimental results, thus builds a basis for analyzing the process’s mechanism, allows for theoretical guidance for analyzing feasibility and helps optimize key parameters.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2917 ◽  
Author(s):  
Andrzej Gontarz ◽  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak

This paper begins with a brief overview of the methods for producing balls. It then discusses the rolling processes for producing balls in helical passes. Next, a method for designing tools for helical rolling (HR) is described. Six different cases of rolling using tools with helical passes of different lengths are modeled by the finite element method (FEM). The simulations are performed with the use of Simufact Forming version 13.3. Based on the 3D simulations, the distributions of effective strain, damage criterion, and temperature, as well as the variations in loads and torques, are determined. This study also predicts the rate and manner of wear of the helical tools, depending on the tool design. As a result, it has been found that an increased length of the helical forming passes is advantageous in terms of tool service life. It has also been found that excessive elongation of the forming zone is not cost-effective.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

Except at the start and the end of the deformation, processes such as extrusion, drawing, and rolling are kinematically steady state. Steady-state solutions in these processes are needed for equipment design and die design and for controlling product properties. A variety of solutions for different conditions in extrusion and drawing have been obtained by applying the slip-line theory and the upper-bound theorems. Early applications of the finite-element method to the analysis of extrusion have been for the loading of a workpiece that fits the die and container, and for the extrusion of a small amount of it rather than extruding the workpiece until a steady state is reached. An exception is the work by Lee et al. for plane-strain extrusion with frictionless curved dies using the elastic-plastic finite-element method. In view of the computational efficiency, various numerical procedures particularly suited for the analysis of steady-state processes have been developed by several investigators. Shah and Kobayashi analyzed axisymmetric extrusion through frictionless conical dies by the rigid-plastic finite-element method. The technique involves construction of the flow lines from velocities and integration of strain-rates numerically along flow lines to determine the strain distributions. An improvement of the method was made by including friction at the die-workpiece interface. The steady-state deformation characteristics in extrusion and drawing were obtained as functions of material property, die-workpiece interface friction, die angle, and reduction. In kinematically transient or nonsteady-state forming problems, a mesh that requires continuous updating (Lagrangian) is used. In steady-state problems, a mesh fixed in space (Eulerian) is appropriate, since the process configuration does not change with time. For steady-state problems whose solutions depend on the loading history or strain history of the material, combined Eulerian-Lagrangian approaches are necessary. In deformation of rigid-plastic materials under the isothermal conditions, the solution obtained by the finite-element method is in terms of velocities and, hence, strain-rates. In the nonsteady-state processes, the effective strain-rates are added incrementally for each element to determine the effective strains after a certain amount of deformation.


1974 ◽  
Vol 188 (1) ◽  
pp. 627-638 ◽  
Author(s):  
A. O. Tay ◽  
M. G. Stevenson ◽  
G. De Vahl Davis

Temperature distributions for typical cases of orthogonal machining with a continuous chip were obtained numerically by solving the steady two-dimensional energy equation using the finite element method. The distribution of heat sources in both the primary and secondary zones was calculated from the strain-rate and flow stress distributions. Strain, strain-rate and velocity distributions were calculated from deformed grid patterns obtained from quick-stop experiments. Flow stress was considered as a function of strain, strain-rate and temperature. The chip, workpiece and tool (actual shape and size) were treated as one system and material properties such as density, specific heat and thermal conductivity were considered as functions of temperature.


Sign in / Sign up

Export Citation Format

Share Document