scholarly journals PID Controller Implemented in Festo CDPX

2019 ◽  
Vol 260 ◽  
pp. 02008
Author(s):  
Primož Podržaj

In this paper, we describe the procedure for the implementation of the PID controller in the Festo CDPX operator unit. These units enable the execution of the control algorithm and human machine interface in a single unit. In our laboratory the unit is used to teach the students about the basics of control systems. For this purpose, one of the most common closed loop control systems for the education purposes was selected. It is a water level control system. In this paper the design of the whole system is presented. The need for a PI control algorithm is also explained. The programming of the operator unit CDPX, both in Festo CoDeSys and Designer Studio is explained. Such a simple system has turned out to be a great educational tool for Control Theory and Programmable Logic Controller related subjects.

Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.


Author(s):  
A. Maczyński ◽  
S. Wojciech

It is often desirable to keep the load of an offshore crane in a fixed point in space despite the movement of its base. To solve the problem of stabilizing the load’s position, the authors have proposed application of the hoisting winch drum’s drive and an auxiliary system. The auxiliary system enables independent moving of a selected point of the hoisting rope in two perpendicular planes. In this paper, two methods for determining the drive functions of the auxiliary system and the hoisting winch’s drum ensuring stabilization of an offshore crane’s load are presented. Both methods are based on a simplified model of a crane and allow compensation for a pseudo-harmonic base motion. In order to take into account the deviations of base motion from the assumed and avoid over simplifications, the second, more sophisticated model is developed. This model is proposed to be applied in closed-loop control systems with a PID controller. Results of sample numerical simulations are included that proved useful information about the developed methods and models for stabilization of an offshore crane’s load.


2013 ◽  
Vol 23 (10) ◽  
pp. 1401-1414 ◽  
Author(s):  
Konstantinos G. Papadopoulos ◽  
Nikolaos D. Tselepis ◽  
Nikolaos I. Margaris

Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for an oval stamp forming die using Matlab®’s Simulink® and the dSPACE® ControlDesk®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a Linear Quadratic Gauss controller and a Bang-Bang controller. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forces. It was demonstrated that a complex, advanced controller could be modeled using Matlab’s Simulink and implemented in dSPACE ControlDesk. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation resulting in a complex control strategy that could be used to improve the robustness of stamp forming dies.


1993 ◽  
Vol 28 (11-12) ◽  
pp. 531-538 ◽  
Author(s):  
B. Teichgräber

A nitrification/denitrification process was applied to reject water treatment from sludge dewatering at Bottrop central sludge treatment facilities of the Emschergenossenschaft. On-line monitoring of influent and effluent turbidity, closed loop control of DO and pH, and on-line monitoring of nitrogen compounds were combined to a three level control pattern. Though on-line measurement of substrate and product showed substantial response time it could be used to operate nitrification/denitrification within process boundaries.


2021 ◽  
Vol 68 ◽  
pp. 102662
Author(s):  
Paulo Broniera Junior ◽  
Daniel Prado Campos ◽  
André Eugenio Lazzaretti ◽  
Percy Nohama ◽  
Aparecido Augusto Carvalho ◽  
...  

Author(s):  
Khac-Khiem Nguyen ◽  
Trong-Thang Nguyen

<p>This research aims to propose an algorithm for controlling the speed of the Direct Current (DC) motor in the absence of the sensor of speed. Based on the initial mathematical model of DC motor, the authors build the dynamic state equation of DC motor, and then build an estimation model to determine the speed of the DC motor without a sensor. The advantages of the proposed method are demonstrated through the closed-loop control model using the PID controller. In order for the results to be objective, we assume that the parameters of the DC motor in the estimation model are not known correctly. The results show that the quality of control in the absence of a sensor is equivalent to the case with the sensor.</p>


Sign in / Sign up

Export Citation Format

Share Document