scholarly journals Preliminary Assessment of 22Cr and 15Cr Materials Selection for CO2 Enhanced Oil Recovery Program

2019 ◽  
Vol 269 ◽  
pp. 03014
Author(s):  
Harris Prabowo ◽  
Yudha Pratesa ◽  
Reza M. Ulum ◽  
Badrul Munir ◽  
Johny W. Soedarsono

Enhanced Oil Recovery (EOR) program to increase oil production from mature fields are now being implemented in Indonesia amid concern over the continuous decrease of oil production level. The mature fields and EOR process have the tendency to carry relatively high impurities components (CO2, H2S, chloride ions) that results in early corrosion occurrence, creating damages in the subsurface equipment (wellhead, tubing, Xmas tree, etc). In Java area with 0.09 TSCF potential gas reserves, 49.3 MMSTB oil and + 23% CO2 content, such amount of CO2 gas and possibility of H2S and chloride from the reservoir will require a higher grade material than the conventional carbon steel. This paper discuss the preliminary materials selection process in the program plan based on the existing condition. The material selection based on the evaluation of closest field data, literature review as a comparison, material, and fluid analysis test. Duplex 22Cr-15 Cr materials are the main study in the paper as the candidate for the tubing material in high CO2, high H2S and chloride environment. The polarization result in 27°C and 50°C showed that the chrome 22 %Cr material had pitting tendency in chloride ion 25,000 ppm, while at high temperature (80 °C) the pitting tendency shifted to 5,000 ppm of chloride ion.

2021 ◽  
Vol 44 (2) ◽  
pp. 83-93
Author(s):  
Steven Chandra ◽  
Prasandi Abdul Aziz ◽  
Muhammad Raykhan Naufal ◽  
Wijoyo Niti Daton

The most of today's global oil production comes from mature fields. Oil companies and governments are both concerned about increasing oil recovery from aging resources. To maintain oil production, the mature field must apply the Enhanced Oil Recovery method.  water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during  injection with the injected water to control the mobility of . This study will discuss possible corrosion during  and water injection and the casing load calculation along with the production tubing during the injection phase. The following study also performed a suitable material selection for the best performance injection. This research was conducted by evaluating casing integrity for simulate  water-alternating-gas (WAG) to be applied in the X-well in the Y-field, South Sumatra, Indonesia. Corrosion prediction were performed using Electronic Corrosion Engineer (ECE®) corrosion model and for the strength of tubing which included burst, collapse, and tension of production casing was assessed using Microsoft Excel. This study concluded that for the casing load calculation results in 600 psi of burst pressure, collapse pressure of 2,555.64 psi, and tension of 190,528 lbf. All of these results are still following the K-55 production casing rating. While injecting , the maximum corrosion rate occurs. It has a maximum corrosion rate of 2.02 mm/year and a minimum corrosion rate of 0.36 mm/year. With this value, it is above NORSOK Standard M-001 which is 2 mm/year and needs to be evaluated to prevent the rate to remain stable and not decrease in the following years. To prevent the effect of maximum corrosion rate, the casing material must use a SM13CR (Martensitic Stainless Steel) which is not sour service material.


2021 ◽  
Vol 44 (2) ◽  
pp. 107-121
Author(s):  
Steven Chandra ◽  
Prasandi A Aziz ◽  
Muhammad Raykhan Naufal ◽  
Wijoyo Niti Daton

The most of today's global oil production comes from mature fields. Oil companies and governments are both concerned about increasing oil recovery from aging resources. To maintain oil production, the mature field must apply the Enhanced Oil Recovery method.  water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during  injection with the injected water to control the mobility of . This study will discuss possible corrosion during  and water injection and the casing load calculation along with the production tubing during the injection phase. The following study also performed a suitable material selection for the best performance injection. This research was conducted by evaluating casing integrity for simulate  water-alternating-gas (WAG) to be applied in the X-well in the Y-field, South Sumatra, Indonesia. Corrosion prediction were performed using Electronic Corrosion Engineer (ECE®) corrosion model and for the strength of tubing which included burst, collapse, and tension of production casing was assessed using Microsoft Excel. This study concluded that for the casing load calculation results in 600 psi of burst pressure, collapse pressure of 2,555.64 psi, and tension of 190,528 lbf. All of these results are still following the K-55 production casing rating. While injecting , the maximum corrosion rate occurs. It has a maximum corrosion rate of 2.02 mm/year and a minimum corrosion rate of 0.36 mm/year. With this value, it is above NORSOK Standard M-001 which is 2 mm/year and needs to be evaluated to prevent the rate to remain stable and not decrease in the following years. To prevent the effect of maximum corrosion rate, the casing material must use a SM13CR (Martensitic Stainless Steel) which is not sour service material.


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2021 ◽  
pp. 131-143
Author(s):  
F. A. Koryakin ◽  
N. Yu. Tretyakov ◽  
O. B. Abdulla ◽  
V. G. Filippov

Nowadays the share of hard-to-recover reserves is growing, and to maintain oil production on necessarily level, we need to involve hard-to-recover reserves or to increase oil production efficiency on a brownfields due to enhanced oil recovery. The efficiency of enhanced oil recovery can be estimated by oil saturation reduction. Single-well-chemical-tracer-test (SWCTT) is increasingly used to estimate oil saturation before and after enhanced oil recovery application. To interpret results of SWCTT, reservoir simulation is recommended. Oil saturation has been calculated by SWCTT interpretation with use of reservoir simulator (CMG STARS). Distribution constants has been corrected due to results of real core sample model, and core tests has been successfully simulated. Obtained values of oil saturation corresponds with real oil saturation of samples. Thus, SWCTT as a method of oil saturation estimation shows good results. This method is promising for enhanced oil recovery efficiency estimation.


1981 ◽  
Vol 8 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Douglas Argyle Campbell

This survey has described the foreseeable environmental and economic impacts of enhanced oil-recovery (EOR) on U.S. oil production between 1980 and 2000. It has indicated that EOR production may be expected to rise from the approximately 4% of total U.S. oil production in 1980, to the projected approximations of 10.5% in 1985, 18.5% in 1990, 23% in 1995, and perhaps 30% in 2000. These percentages are substantial, particularly as this form of oil production has been, up until recently, quite limited. Many of the processes are still in the laboratory stage of development—particularly chemical and microbiological processes. With continued laboratory experimentation and field research, it is possible that the percentages could be even greater than the above suggestions as we reach into the 21st Century.The potential for EOR is very considerable and probably great, as it could involve some two-thirds of all the oil already identified in the United States and assumed to be unrecoverable by primary or secondary means. The U.S. Department of Energy (DOE) has given important incentives to the EOR industry to make such increased production worth while through raising prices to compensate for the cost of equipment, and deducting expenditure on such equipment from a new ‘Windfall Profit Tax’.Along with EOR's economic potential, there are two major ecological dangers: air pollution through thermal processes, and ground-water pollution through chemical processes. It is essential to the well-being of the United States that clean air standards be adhered to, and that the equipment necessary to purify the air (particularly in California) be available and operate to reduce emissions.A great deal more research needs to be undertaken towards developing safeguards to ensure that drinkingwater is not contaminated by dangerous chemicals which may be used in ‘chemical flooding’ of depleted oil-wells. Many of these chemicals have merely ‘come out of the laboratory’ and are sold by chemical companies without sufficient field-testing. How far these chemicals could travel underground must still be determined. It is also important to ensure that carbon dioxide, fed into a geological formation, can be recaptured and re-injected without escaping into the atmosphere, where there is the potential danger of a global ‘greenhouse effect’ upon the world's temperature. Finally, it is important to safeguard the Earth against microbes which could be injected into its geological strata without sufficient knowledge of their impact on the ecology of the Earth. Thus, much environmental research will be called for with these new methods of producing oil for Man's use.This study has reviewed the four major methods of EOR that are currently being utilized or proposed— thermal processes, miscible and semi-miscible processes, chemical processes, and microbiological processes, and found that they could all have ongoing possibilities.Given appropriate environmental safeguards, EOR should become a major force in the production of energy for the United States over the next 20 years, and it seems reasonable to expect that much the same could apply to other parts of the world. However, it is important that safeguarding the environment should guide the DOE in terms of its incentive programmes for specific processes.


2020 ◽  
Author(s):  
Aleksandr Tarasovich Litvin ◽  
Aleksey Alekseyevich Terentiyev ◽  
Denis Anatolevich Gornov ◽  
Vladimir Nikolaevich Kozhin ◽  
Konstantin Vasiliyevich Pchela ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 1807-1810
Author(s):  
Hao Chen ◽  
Sheng Lai Yang ◽  
Fang Fang Li ◽  
San Bo Lv ◽  
Zhi Lin Wang

CO2 flooding process has been a proven valuable tertiary enhanced oil recovery (EOR) technique. In this paper, experiment on extractive capacity of CO2 in oil saturated porous media was conducted under reservoir conditions. The main objectives of the study are to evaluate extractive capacity of CO2 in oil saturated natural cores and improve understanding of the CO2 flooding mechanisms, especially in porous media conditions. Experimental results indicated that oil production decreases while GOR increases with extractive time increases. the changes of the color and state of the production oil shows that oil component changes from light to heavy as extractive time increases. In addition, no oil was produced by water flooding after extractive experiment. Based on the experimental results and phenomena, the main conclusion drawn from this study is that under supercritical condition, CO2 has very powerful extractive capacity. And the application of CO2 flooding is recommended for enhancing oil recovery.


2014 ◽  
Vol 629-630 ◽  
pp. 351-357
Author(s):  
Chen Huang ◽  
Wen Ying Guo ◽  
Yi Bo Yang ◽  
Hui Zhao ◽  
Zhen Jie Li ◽  
...  

Chloride resistant HPC and protective cover are two basic measurements to improve the durability of concrete in chloride environment. Though it provides crucial cover for concrete to resist chloride ions, spacer has limited chloride resistant ability, which is overlooked by past researchers. Cementitious spacers are easy access for chloride ions to penetrate into concrete resulting in reduction of structural durability. To improve cementitious spacers’ performance, a systematic study was conducted. Test results showed that there was major difference between mortar and concrete in terms of chloride coulomb electric flux but minor difference in terms of chloride ion diffusion coefficient, which implied using chloride ion diffusion coefficient as spacer’s durability indicator was preferable; parameters of mix design had a similar influence on mortar and concrete and, with the same mixing parameters, the strength and chloride resistant ability of mortar were weaker than concrete’s; it was feasible to develop the mix design of chloride resistant cementitious spacers based on concrete’s design method with certain adjustments, such as using stricter mix proportion, adding small-size coarse aggregate, lowering water-binder ratio and optimizing the binder proportion, to achieve higher strength and durability.


Sign in / Sign up

Export Citation Format

Share Document