scholarly journals Well Integrity Study for CO_2 WAG Application in Mature Field X, South Sumatra Area for the Fulfillment as CO2 Sequestration Sink

2021 ◽  
Vol 44 (2) ◽  
pp. 83-93
Author(s):  
Steven Chandra ◽  
Prasandi Abdul Aziz ◽  
Muhammad Raykhan Naufal ◽  
Wijoyo Niti Daton

The most of today's global oil production comes from mature fields. Oil companies and governments are both concerned about increasing oil recovery from aging resources. To maintain oil production, the mature field must apply the Enhanced Oil Recovery method.  water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during  injection with the injected water to control the mobility of . This study will discuss possible corrosion during  and water injection and the casing load calculation along with the production tubing during the injection phase. The following study also performed a suitable material selection for the best performance injection. This research was conducted by evaluating casing integrity for simulate  water-alternating-gas (WAG) to be applied in the X-well in the Y-field, South Sumatra, Indonesia. Corrosion prediction were performed using Electronic Corrosion Engineer (ECE®) corrosion model and for the strength of tubing which included burst, collapse, and tension of production casing was assessed using Microsoft Excel. This study concluded that for the casing load calculation results in 600 psi of burst pressure, collapse pressure of 2,555.64 psi, and tension of 190,528 lbf. All of these results are still following the K-55 production casing rating. While injecting , the maximum corrosion rate occurs. It has a maximum corrosion rate of 2.02 mm/year and a minimum corrosion rate of 0.36 mm/year. With this value, it is above NORSOK Standard M-001 which is 2 mm/year and needs to be evaluated to prevent the rate to remain stable and not decrease in the following years. To prevent the effect of maximum corrosion rate, the casing material must use a SM13CR (Martensitic Stainless Steel) which is not sour service material.

2021 ◽  
Vol 44 (2) ◽  
pp. 107-121
Author(s):  
Steven Chandra ◽  
Prasandi A Aziz ◽  
Muhammad Raykhan Naufal ◽  
Wijoyo Niti Daton

The most of today's global oil production comes from mature fields. Oil companies and governments are both concerned about increasing oil recovery from aging resources. To maintain oil production, the mature field must apply the Enhanced Oil Recovery method.  water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during  injection with the injected water to control the mobility of . This study will discuss possible corrosion during  and water injection and the casing load calculation along with the production tubing during the injection phase. The following study also performed a suitable material selection for the best performance injection. This research was conducted by evaluating casing integrity for simulate  water-alternating-gas (WAG) to be applied in the X-well in the Y-field, South Sumatra, Indonesia. Corrosion prediction were performed using Electronic Corrosion Engineer (ECE®) corrosion model and for the strength of tubing which included burst, collapse, and tension of production casing was assessed using Microsoft Excel. This study concluded that for the casing load calculation results in 600 psi of burst pressure, collapse pressure of 2,555.64 psi, and tension of 190,528 lbf. All of these results are still following the K-55 production casing rating. While injecting , the maximum corrosion rate occurs. It has a maximum corrosion rate of 2.02 mm/year and a minimum corrosion rate of 0.36 mm/year. With this value, it is above NORSOK Standard M-001 which is 2 mm/year and needs to be evaluated to prevent the rate to remain stable and not decrease in the following years. To prevent the effect of maximum corrosion rate, the casing material must use a SM13CR (Martensitic Stainless Steel) which is not sour service material.


2019 ◽  
Vol 269 ◽  
pp. 03014
Author(s):  
Harris Prabowo ◽  
Yudha Pratesa ◽  
Reza M. Ulum ◽  
Badrul Munir ◽  
Johny W. Soedarsono

Enhanced Oil Recovery (EOR) program to increase oil production from mature fields are now being implemented in Indonesia amid concern over the continuous decrease of oil production level. The mature fields and EOR process have the tendency to carry relatively high impurities components (CO2, H2S, chloride ions) that results in early corrosion occurrence, creating damages in the subsurface equipment (wellhead, tubing, Xmas tree, etc). In Java area with 0.09 TSCF potential gas reserves, 49.3 MMSTB oil and + 23% CO2 content, such amount of CO2 gas and possibility of H2S and chloride from the reservoir will require a higher grade material than the conventional carbon steel. This paper discuss the preliminary materials selection process in the program plan based on the existing condition. The material selection based on the evaluation of closest field data, literature review as a comparison, material, and fluid analysis test. Duplex 22Cr-15 Cr materials are the main study in the paper as the candidate for the tubing material in high CO2, high H2S and chloride environment. The polarization result in 27°C and 50°C showed that the chrome 22 %Cr material had pitting tendency in chloride ion 25,000 ppm, while at high temperature (80 °C) the pitting tendency shifted to 5,000 ppm of chloride ion.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


2010 ◽  
Author(s):  
Ghaddab Fethi ◽  
K. Kaddour ◽  
M. Tesconi ◽  
Brancolini Alberto ◽  
Carniani Carlo ◽  
...  

2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2016 ◽  
Vol 0 (6) ◽  
pp. 109
Author(s):  
Yuliya Zinurovna Guseva ◽  
Lubov Konstantinovna Altunina ◽  
Lidiya Ivanovna Svarovskaya ◽  
Varvara Sergeevna Ovsyannikova

2021 ◽  
pp. 131-143
Author(s):  
F. A. Koryakin ◽  
N. Yu. Tretyakov ◽  
O. B. Abdulla ◽  
V. G. Filippov

Nowadays the share of hard-to-recover reserves is growing, and to maintain oil production on necessarily level, we need to involve hard-to-recover reserves or to increase oil production efficiency on a brownfields due to enhanced oil recovery. The efficiency of enhanced oil recovery can be estimated by oil saturation reduction. Single-well-chemical-tracer-test (SWCTT) is increasingly used to estimate oil saturation before and after enhanced oil recovery application. To interpret results of SWCTT, reservoir simulation is recommended. Oil saturation has been calculated by SWCTT interpretation with use of reservoir simulator (CMG STARS). Distribution constants has been corrected due to results of real core sample model, and core tests has been successfully simulated. Obtained values of oil saturation corresponds with real oil saturation of samples. Thus, SWCTT as a method of oil saturation estimation shows good results. This method is promising for enhanced oil recovery efficiency estimation.


2021 ◽  
Author(s):  
Lijuan Huang ◽  
Zongfa Li ◽  
Shaoran Ren ◽  
Yanming Liu

Abstract The technology of air injection has been widely used in the second and tertiary recovery in oilfields. However, due to the injected air and natural gas will explode, the safety of the gas injection technology has attracted much attention. Gravity assisted oxygen-reduced air flooding is a new method that eliminates explosion risks and improves oil recovery in large-dip oil reservoirs or thick oil layers. The explosion limit data of different components of natural gas under high pressure were obtained through explosion experiments, which verified the suppression effect of oxygen-reduced air on explosions. The influence of natural gas composition and concentration on explosion limits was also investigated. In addition, a rotatable displacement device was used to study the feasibility of gravity assisted oxygen-reduced air injection for improving the heavy oil reservoirs recovery. Under pressure and temperature conditions of 20MPa and 371K, the sand-filled gravity flooding experiments with different dip angles were carried out using oxygen-reduced air with an oxygen content of 8%. The results show that with the increase of the reservoir dip, the pore volume of the injected fluid at the gas channeling point, the efficient development time of gas injection, and the final displacement efficiency of gas injection development all increase through gravity stabilization caused by gravity differentiation. In the presence of a dip angle, the cumulative oil production before the gas breakthrough point exceeded 80% of the oil production during the entire production process, indicating that gravity assisted oxygen-reduced air flooding is an effective and safe improving oil recovery method. Finally, the explosion risk of each link of the air injection process is analyzed, and the high-risk area and the low-risk area are determined.


Sign in / Sign up

Export Citation Format

Share Document