scholarly journals Interfacial instability of two inviscid fluid layers under quasi-periodic oscillations

2019 ◽  
Vol 286 ◽  
pp. 07011
Author(s):  
A. Eljaouahiry ◽  
A. Arfaoui ◽  
M. Assoul ◽  
S. Aniss

We investigate the effect of horizontal quasi-periodic oscillations on the stability of two immiscible fluids of different densities. The two fluid layers are confined in a cavity of infinite extension in the horizontal directions. We show in the inviscid theory that the linear stability analysis leads to the quasi-periodic Mathieu equation, with damping, which describes the evolution of the interfacial amplitude. Thus, we examine the effect of horizontal quasi-periodic vibration, with two incommensurate frequencies, on the stability of the interface. The numerical study shows the existence of two types of instability: the Kelvin-Helmholtz instability and the quasi-periodic resonances. The numerical results show also that an increase of the frequency ratio has a distabilizing effect on the Kelvin-Helmholtz instability and curves converge towards those of the periodic case.

2019 ◽  
Vol 286 ◽  
pp. 07014
Author(s):  
J. Bouchgl ◽  
M. Souhar

The stability of an interface of two viscous immiscible fluids of different densities and confined in a Hele-Shaw cell which is oscillating with periodic angular velocityis investigated. A linear stability analysis of the viscous and time-dependent basic flows, generated by a periodic rotation, leads to a time periodic oscillator describing the evolution of the interface amplitude. In this study, we examine mainly the effect of the frequency of the periodic rotation on the interfacial instability that occurs at the interface.


1995 ◽  
Vol 296 ◽  
pp. 73-126 ◽  
Author(s):  
Chantal Staquet

In a stably stratified shear layer, thin vorticity layers (‘baroclinic layers’) are produced by buoyancy effects and strain in between the Kelvin–Helmholtz vortices. A two-dimensional numerical study is conducted, in order to investigate the stability of these layers. Besides the secondary Kelvin–Helmholtz instability, expected but never observed previously in two-dimensional numerical simulations, a new instability is also found.The influence of the Reynolds number (Re) upon the dynamics of the baroclinic layers is first studied. The layers reach an equilibrium state, whose features have been described theoretically by Corcos & Sherman (1976). An excellent agreement between those predictions and the results of the numerical simulations is obtained. The baroclinic layers are found to remain stable almost up to the time the equilibrium state is reached, though the local Richardson number can reach values as low as 0.05 at the stagnation point. On the basis of the work of Dritschel et al. (1991), we show that the stability of the layer at this location is controlled by the outer strain field induced by the large-scale Kelvin–Helmholtz vortices. Numerical values of the strain rate as small as 3% of the maximum vorticity of the layer are shown to stabilize the stagnation point region.When non-pairing flows are considered, we find that only for Re ≤ 2000 does a secondary instability eventually amplify in the layer. (Re is based upon half the initial vorticity thickness and half the velocity difference at the horizontally oriented boundaries.) This secondary instability is not of the Kelvin–Helmholtz type. It develops in the neighbourhood of convectively unstable regions of the primary Kelvin–Helmholtz vortex, apparently once a strong jet has formed there, and moves along the baroclinic layer while amplifying. It next perturbs the layer around the stagnation point and a secondary instability, now of the Kelvin–Helmholtz type, is found to develop there.We next examine the influence of a pairing upon the flow behaviour. We show that this event promotes the occurrence of a secondary Kelvin–Helmholtz instability, which occurs for Re ≥ 400. Moreover, at high Reynolds number (≥ 2000), secondary Kelvin–Helmholtz instabilities develop successively in the baroclinic layer, at smaller and smaller scales, thereby transferring energy towards dissipative scales through a mechanism eventually leading to turbulence. Because the vorticity of such a two-dimensional stratified flow is no longer conserved following a fluid particle, an analogy with three-dimensional turbulence can be drawn.


2003 ◽  
Vol 15 (11) ◽  
pp. 3370-3384 ◽  
Author(s):  
N. J. Balmforth ◽  
R. V. Craster ◽  
C. Toniolo

2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


Author(s):  
Richard Rand ◽  
Rachel Hastings

Abstract In this work we investigate the following quasiperiodic Mathieu equation: x ¨ + ( δ + ϵ cos ⁡ t + ϵ cos ⁡ ω t ) x = 0 We use numerical integration to determine regions of stability in the δ–ω plane for fixed ϵ. Graphs of these stability regions are presented, based on extensive computation. In addition, we use perturbations to obtain approximations for the stability regions near δ=14 for small ω, and we compare the results with those of direct numerical integration.


2014 ◽  
Vol 755 ◽  
pp. 705-731 ◽  
Author(s):  
Sasan Sarmast ◽  
Reza Dadfar ◽  
Robert F. Mikkelsen ◽  
Philipp Schlatter ◽  
Stefan Ivanell ◽  
...  

AbstractTwo modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier–Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tjæreborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral triggers instabilities, leading to breakdown of the wake. Based on the grid configurations and the type of excitations, two basic flow cases, symmetric and asymmetric, are identified. In the symmetric setup, we impose a 120° symmetry condition in the dynamics of the flow and in the asymmetric setup we calculate the full 360° wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific frequencies and spatial structures, e.g. two dominant groups of modes with positive growth (spatial structures) are identified, while breaking the symmetry reveals that almost all the modes have positive growth rate. In both setups, the most unstable modes have a non-dimensional spatial growth rate close to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ and they are characterized by an out-of-phase displacement of successive helix turns leading to local vortex pairing. The present results indicate that the asymmetric case is crucial to study, as the stability characteristics of the flow change significantly compared to the symmetric configurations. Based on the constant non-dimensional growth rate of disturbances, we derive a new analytical relationship between the length of the wake up to the turbulent breakdown and the operating conditions of a wind turbine.


Author(s):  
Thiago S. Hallak ◽  
José F. Gaspar ◽  
Mojtaba Kamarlouei ◽  
Miguel Calvário ◽  
Mário J. G. C. Mendes ◽  
...  

This paper presents a study regarding a novel hybrid concept for both wind and wave energy offshore. The concept resembles a semi-submersible wind platform with a larger number of columns. Wave Energy Devices such as point absorbers are to be displayed around the unit, capturing wave energy while heaving and also enhancing the stability of the platform. In this paper, a first numerical study of the platform’s hull, without Wave Energy Converters, is carried out. Experiments in wave basin regarding the same unit have been conducted and the results are presented and compared to the numerical ones. Both stability and seakeeping performances are assessed and compared.


2021 ◽  
Vol 50 (6) ◽  
pp. 1799-1814
Author(s):  
Norazak Senu ◽  
Nur Amirah Ahmad ◽  
Zarina Bibi Ibrahim ◽  
Mohamed Othman

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy and the effectiveness of the derived method.


Author(s):  
Fayçal Hammami ◽  
Nader Ben Cheikh ◽  
Brahim Ben Beya

This paper deals with the numerical study of bifurcations in a two-sided lid driven cavity flow. The flow is generated by moving the upper wall to the right while moving the left wall downwards. Numerical simulations are performed by solving the unsteady two dimensional Navier-Stokes equations using the finite volume method and multigrid acceleration. In this problem, the ratio of the height to the width of the cavity are ranged from H/L = 0.25 to 1.5. The code for this cavity is presented using rectangular cavity with the grids 144 × 36, 144 × 72, 144 × 104, 144 × 136, 144 × 176 and 144 × 216. Numerous comparisons with the results available in the literature are given. Very good agreements are found between current numerical results and published numerical results. Various velocity ratios ranged in 0.01≤ α ≤ 0.99 at a fixed aspect ratios (A = 0.5, 0.75, 1.25 and 1.5) were considered. It is observed that the transition to the unsteady regime follows the classical scheme of a Hopf bifurcation. The stability analysis depending on the aspect ratio, velocity ratios α and the Reynolds number when transition phenomenon occurs is considered in this paper.


Sign in / Sign up

Export Citation Format

Share Document