scholarly journals Flexure Behaviour of Reinforced High Strength Concrete Elements Affected by Corrosion

2019 ◽  
Vol 289 ◽  
pp. 10009
Author(s):  
Camelia Negrutiu ◽  
Ioan Sosa ◽  
Bogdan Heghes

Corrosion of the reinforcement is a constant vulnerability for reinforced concrete structures exposed to aggressive environments. High strength concrete is known to prevent corrosion of the reinforcement, in a non-cracked state, when exposed to aggressive environments. The purpose of this study is to assess the opportunity of using high strength concrete in cracked elements exposed to corrosion and compare them with non-exposed elements. A series of simply supported reinforced high strength concrete beams with concrete cover of 25 and 50 mm were pre-cracked, up to a service life crack of 0.1 mm, further exposed to accelerated corrosion through a process of electrolysis and finally tested to failure. A series of non-exposed witness specimens were also tested to failure. All elements were designed with the same bending capacity. The flexure behaviour was assessed by plotting experimental and theoretical ultimate limit state position of the neutral axis at midspan and the results show no significant differences in the overall behaviour, despite the affected reinforcement, between the corroded and non-corroded elements. Moreover, the design bending moments were approximately 40% lower than the experimental ones, even for corroded beams, which can be a significant strength reserve of the beams, useful in aggressive environments.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Iakov Iskhakov ◽  
Yuri Ribakov

As known, high-strength compressed concrete elements have brittle behavior, and elastic-plastic deformations do not appear practically up to their ultimate limit state (ULS). This problem is solved in modern practice by adding fibers that allow development of nonlinear deformations in such elements. As a rule, are applied steel fibers that proved high efficiency and contribute ductile behavior of compressed high-strength concrete (HSC) elements as well as the desired effect at long-term loading (for other types of fibers, the second problem is still not enough investigated). However, accurate prediction of the ULS for abovementioned compression elements is still very important and current. With this aim, it is proposed to use transverse deformations in HSC to analyze compression elements' behavior at stages close to ultimate. It is shown that, until the appearance of nonlinear transverse deformations (cracks formation), these deformations are about 5-6 times lower than the longitudinal ones. When cracks appear, the tensile stress-strain relationship in the transverse direction becomes nonlinear. This fact enables to predict that the longitudinal deformations approach the ultimate value. Laboratory tests were carried out on 21 cylindrical HSC specimens with various steel fibers content (0, 20, 30, 40, and 60 kg/m3). As a result, dependences of transverse deformations on longitudinal ones were obtained. These dependences previously proposed by the authors’ concept of the structural phenomenon allow proper estimation of the compressed HSC state up to failure. Good agreement between experimental and theoretical results forms a basis for further development of modern steel fibered HSC theory and first of all nonlinear behavior of HSC.


2010 ◽  
Vol 16 (4) ◽  
pp. 462-470 ◽  
Author(s):  
Guray Arslan ◽  
Ercan Cihanli

The ductility of reinforced concrete beams is very important, since it is essential to avoid a brittle failure of the structure by ensuring adequate curvature at the ultimate limit state. One of the procedures used to quantify ductility is based on curvatures, namely, curvature ductility. It is necessary to know the curvature ductility of singly reinforced high‐strength concrete (HSC) sections for determining a maximum permissible tensile reinforcement ratio or a maximum depth of the concrete compression area in design codes. The requirements of several codes and methods of prediction of the curvature ductility are based on the experimental results of normal strength concrete (NSC). The rules derived for NSC sections may not be appropriate for HSC sections, and verifications and modifications may be required for the evaluation of curvature ductility of HSC sections. In this study, the major factors affecting the curvature ductility of a singly reinforced HSC beam section are investigated. Based on numerical analyses, a parametric study has been carried out to evaluate the effects of various structural parameters on the curvature ductility of reinforced HSC beam sections. Santrauka Gelžbetoniniu siju plastiškumas yra labai svarbi savybe, apsauganti konstrukcija nuo staigios irties. Tam užtikrinti reikalinga atitinkama kreive, esant tinkamumo ribiniam būviui. Plastiškumas ivertinamas naudojant kreivines diagramas – plastiškumo kreives. Norint nustatyti didžiausia tempiamos armatūros kieki arba didžiausia gniuždomosios zonos aukšti, remiantis normomis reikia žinoti armuoto stipriojo betono (HSC) plastiškumo kreive. Kai kurios normos ir metodai plas‐tiškumo kreive nustato pagal paprastojo betono (NSC) eksperimentinius duomenis. Taisykles, skirtos paprastojo betono skerspjūvio plastiškumo kreivei nustatyti, gali netikti stipriajam betonui, todel reikia atlikti papildomus tyrimus ir metodu pakeitimus. Šiame darbe tiriami pagrindiniai veiksniai, darantys itaka stipriojo betono plastiškumo kreivei. Atliekant skai‐tini modeliavima, buvo ivertinti ivairūs skerspjūvio konstrukciniai parametrai, darantys poveiki stipriojo betono plas‐tiškumo kreivei.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3114
Author(s):  
Rami Eid ◽  
Boris Muravin ◽  
Konstantin Kovler

Acoustic Emission (AE) nondestructive tests have attracted great interest for their use in the determination of structural properties and behavior of reinforced concrete (RC) elements. One of the applications this method can contribute to is in high-strength concrete (HSC) columns. These elements have a great advantage in the lower stories of high-rise buildings. However, the premature failure of the concrete cover and the brittleness nature of the failure is of a concern for engineers. This paper presents a study on the AE monitoring of HSC columns subjected to compressive axial loading. The study consists of four large-scale reinforced HSC columns with different confinement reinforcement and height. It is shown that the AE distributions in the columns are categorized by three stages. Moreover, the levels of loads reached at the first AE macro event are similar to the lower range levels of the nominal axial compressive strengths of the tested specimens, while the majority of macro AE events are located at the concrete cover. Based on the results of this study, AE monitoring can provide indications for the damage and load levels attained by reinforced high-strength concrete columns subjected to compressive axial loading.


2015 ◽  
Vol 744-746 ◽  
pp. 141-147
Author(s):  
Er Cong Meng ◽  
Wen Xiang Zeng ◽  
Xiu Li Qiu ◽  
Yi Sheng Su

In order to verify the feasibility of ABAQUS, finite element simulation analysis is used to a castellated steel reinforced high strength concrete beam (CSRHSC beam) firstly. Then we consider the strength of steel, strength grade of concrete and thickness of steel protective layer as parameters to study the mechanical properties of the beam by ABAQUS. The results show that: The bearing capacity of beam increases when the steel strength improves, but the magnitude of increase will gradually reduce with the increase of steel strength. Along with the strength grade of concrete increase, the yield strength and ultimate strength basically tend to linear increasing, the ductility tend to decreasing. With the increase of thickness of concrete cover, the ductility of the beam improves but the ultimate strength decreases.


2012 ◽  
Vol 14 (5) ◽  
pp. 547-559
Author(s):  
Inn-Joon Park ◽  
Sung-Yil Koh ◽  
Chang-Hee Hwang ◽  
Myung-Ho Oh ◽  
Young-Jun Kim

2008 ◽  
Vol 35 (12) ◽  
pp. 1446-1454 ◽  
Author(s):  
M. Hossin ◽  
H. Marzouk

The main focus of this investigation is directed toward the examination of crack-spacing expressions suitable for offshore concrete structure applications. Offshore structures are unique structures that are constantly exposed to harsh environmental conditions, including exposure to seawater and sea spray. The splash zone of an offshore structure is the section of the platform that is the most exposed to both a harsh marine environment and seawater. The design of offshore structures is controlled by mandatory design codes to ensure structural safety and integrity. Most of the available expressions for crack spacing were developed for building structures using normal-strength concrete and normal concrete cover. However, offshore structures are built using high-strength concrete with a thick concrete cover. Very little information is published on the crack analysis of high-strength concrete with a thick concrete cover for offshore applications. An experimental testing program was designed to examine the effects of concrete cover and the bar spacing of normal- and high-strength concrete on crack spacing. The different code expressions are evaluated with respect to the experimental results.


2012 ◽  
Vol 2 (3) ◽  
pp. 102-104 ◽  
Author(s):  
Suthar Sunil B ◽  
◽  
Dr. (Smt.) B. K. Shah Dr. (Smt.) B. K. Shah

PCI Journal ◽  
1984 ◽  
Vol 29 (3) ◽  
pp. 44-73 ◽  
Author(s):  
Harold J. Jobse ◽  
Saad E. Moustafa

Sign in / Sign up

Export Citation Format

Share Document