scholarly journals Distributing Three-Dimensional Aerodynamic Load to Fem Nodes

2019 ◽  
Vol 293 ◽  
pp. 04006
Author(s):  
Sun Weimin

Aiming at the requirement of the load conversion in aeronautics and astronautics static strength analysis, a three-dimensional aerodynamic load equivalent distribution method based on least squares is proposed. Based on the principle of the closest distance, the corresponding relationship between the aerodynamic node and the finite element node is established to ensure that each finite element node has its corresponding aerodynamic node. Under the requirement of minimizing the variance of load obtained by each node allocation, the least squares algorithm is used to obtain the results of the load conversion. Through an engineering example of aerodynamic distribution, it is verified that the method presented in this paper not only has high accuracy but also can ensure the uniformity of load distribution before and after load distribution.

2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2014 ◽  
Vol 695 ◽  
pp. 588-591
Author(s):  
Khairul Salleh Basaruddin ◽  
Ruslizam Daud

This study aims to investigate the influence of trabecular bone in human mandible bone on the mechanical response under implant load. Three dimensional voxel finite element (FE) model of mandible bone was reconstructed from micro-computed tomography (CT) images that were captured from bone specimen. Two FE models were developed where the first consists of cortical bone, trabecular bone and implants, and trabecular bone part was excluded in the second model. A static analysis was conducted on both models using commercial software Voxelcon. The results suggest that trabecular bone contributed to the strength of human mandible bone and to the effectiveness of load distribution under implant load.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


2013 ◽  
Vol 446-447 ◽  
pp. 544-548
Author(s):  
Ying Shi Sun ◽  
Qian Hui Ma ◽  
Liang Xuan

To ensure the safe use of single shear hydraulic lift platform for processing and manufacturing railway vehicles. This paper analyzes the use conditions of single shear hydraulic lift platform, and makes a contact nonlinear finite element analysis on various typical use conditions. The positions of parts subject to danger can be found out through the results of static strength analysis, which finds out the weaknesses and prejudges the failure trend of parts, and which provides guidance for prejudging the faults in actual production and can prevent occurrence of accidents.


2013 ◽  
Vol 284-287 ◽  
pp. 996-1000 ◽  
Author(s):  
Jong Boon Ooi ◽  
Xin Wang ◽  
Ying Pio Lim ◽  
Ching Seong Tan ◽  
Jee Hou Ho ◽  
...  

Portal axle unit is a gearbox unit installed on every end axles of the vehicle. It is installed to the vehicle to give higher ground clearance to enable vehicle to go over large obstacle when driving in off-road conditions. Shafts must be exceptionally tough and lightweight to improve the overall performance of the portal axle unit. In this paper, the shaft is analyzed in three-dimensional model and the stress of the shaft model is analyzed using finite element analysis (FEA). The FEA result is compared with experimental results.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877525 ◽  
Author(s):  
Shangjun Ma ◽  
Chenhui Zhang ◽  
Tao Zhang ◽  
Geng Liu ◽  
Shumin Liu

In this article, 3D or three-dimensional finite element analysis is used to simulate and evaluate the load distribution characteristics of a planetary roller screw mechanism under thermo-mechanical coupling. The finite element model takes into account the installation modes of the planetary roller screw mechanism, which is verified by comparison with theoretical models for a certain load magnitude in four installation modes. In addition, the effects of the installation mode, load magnitude, and temperature condition on the load distribution are also systematically analyzed. The numerical results reveal a phenomenon of threads separating from the meshing, which indicates that the influence of thermo-mechanical coupling on the load distribution cannot be ignored. Furthermore, the influence of the installation mode on the screw–roller interface is larger than that on the nut–roller interface. Compared with the screw–roller interface, the temperature difference is one of the main conditions affecting the load distribution of the planetary roller screw mechanism and has a significant effect on the nut–roller interface. In addition, the influences of the screw rotational speed and the load magnitude on the load distribution on the screw–roller interface are larger than those on the nut–roller interface for the four installation modes.


Sign in / Sign up

Export Citation Format

Share Document