scholarly journals An Effective Approach for Land Use Management in the Palestinian territories

2019 ◽  
Vol 295 ◽  
pp. 02006
Author(s):  
Azzedine Hani

The current understanding of the causes of land-use change is dominated by simplifications, which in turn, underline many environment-development policies that led to unsustainable situation in Gaza City. Therefore, this research aims at establishing an integrated land-use management framework for Gaza city based on cause-effect relationship within sustainability context. It also aims at establishing a prediction model for the relationship between the most influential socio-economic, environmental and institutional indicators that had shaped the current land-use status of the city for the period 1967-2003. The methodology presented in this research work, offers opportunities to simulate the future demand of the different land-uses based upon actual land-use conditions and other determinant factors. The determinant variables of land-use changes have been identified and prioritized using statistical analysis and Artificial Neural Network (ANN). The results were compared with other statistical techniques and expert opinions. ANN prediction model helped in drawing scenarios for future development. Combinations of socio-economic, environmental and institutional variables in addition to the actual land use for the last four years are used as a basis of land-use change explanations and modeling. These pathways indicate that land-use policies and projections for the future must not only capture the population indicators as the only drivers for land-use change but also account for the specific human resource development indicators and urban-environmental conditions. This recognition requires moving beyond some of the simplifications that persist in much of the current understanding of the causes of land-use change and its driving forces. The analysis of the local expert’s opinions provide evidence support the conclusion that the simple answers found in population growth, poverty and infrastructure rarely provide an adequate explanations of land-use changes. Rather, social responses follow from changing economic conditions, mediated by institutional factors are the real causes for land-use changes in Gaza.

2018 ◽  
Vol 10 (8) ◽  
pp. 2759 ◽  
Author(s):  
Songtang He ◽  
Daojie Wang ◽  
Yong Li ◽  
Peng Zhao

Land use change is extremely sensitive to natural factors and human influence in active debris flow. It is therefore necessary to determine the factors that influence land use change. This paper took Wudu District, Gansu Province, China as a study area, and a systemic analysis of the transformational extent and rate of debris flow waste-shoal land (DFWSL) was carried out from 2005 to 2015. The results show that from 2005 to 2015, cultivated land resources transformed to other types of land; cultivated lands mainly transformed to grassland from 2005 to 2010 and construction land from 2010 to 2015. Moreover, the growth rate of construction land from 2005 to 2010 was only 0.11%, but increased to 6.87% between 2010 and 2015. The latter is more than 60 times the former. This increase was brought about by natural disasters (debris flow, earthquakes, and landslides) and anthropogenic factors (national policies or strategies), which acted as driving forces in debris flow area. The former determines the initial use type of the DFWSL while the latter only affects the direction of land use and transformation.


2020 ◽  
Author(s):  
Bence Decsi ◽  
Zsolt Kozma

<p>As a result of climate change, improving the efficiency of our water management has become a key social goal in recent decades. In many regions, water management problems are becoming more common as the result of hydrologic extremes, such as water scarcity, drought or floods.</p><p>Countries and regions dealing with water problems, like some parts of Hungary, could avoid major damage by land use change. The possibility of land use change is obviously not an option in certain instances, especially in populated areas or areas with major infrastructure (roads, railways, airports, factories, etc.). At the same time, non-populated areas (primarily agricultural land) may be transformed in the future, in the hope of better water management.</p><p>Complex, multi-dimensional assessment of ecosystem services can be a step forward in the evaluation and planning of future land use changes with the aim of improving water resources management. The strength of this approach is multi-disciplinarity, which requires the collaboration of representatives of the technical, economic, social and ecological sciences.</p><p>In our study, we quantified and mapped the most important water resources related indicators and services of the Zala River basin in Western Hungary. Zala River is the largest sub-catchment of Lake Balaton, Central-Europe’s largest standing water. The lake has great economic and social importance in Hungary, primarily due to its recreational and cultural services, so it is necessary to have sufficient quantity and quality of water.  The catchment area is 1521 km<sup>2</sup>, land use conditions are dominated by agricultural and forest areas (around 57% and 37% respectively).</p><p>For the quantification of ecosystem services indicators, we used the GIS based, static model package InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). InVEST is suggested to describe the socio-ecological state of several services, under various periods or land use conditions. The strength of the model lies in its solid data requirements and low computational demand. In our work, we mapped the following services and indicators: annual water yield, seasonal water yield, quickflow, nutrient retention, sediment retention and agricultural crop yields.</p><p>We examined the impact of different interventions on the ecosystem services. We intervened primarily in areas where agricultural land use is not justified due to different environmental conditions. In these areas, we analyzed the introduction of natural surfaces with afforestation and meadows. We built up a reference (based on a novel LULC map representing actual conditions) and some fictive model variants. These model variants differed in the amount and location of the new semi-natural areas. The variants were compared for two temporal periods: 1980-2010 and 2020-2050 (based on climate models).</p><p>We quantified the tradeoffs as a result of a given land use change. As expected, the future negative effects of climate change could be mitigated by increasing semi-natural areas. All ecosystem services would improve except for crop yields. At the same time, however, farmers would be deprived of significant yields in areas, which are excluded from agriculture. Our research highlights that the positive effects or tradeoffs due to land-use change will be needed in the future.</p>


2020 ◽  
Vol 12 (9) ◽  
pp. 3687 ◽  
Author(s):  
Siqin Tong ◽  
Gang Bao ◽  
Ah Rong ◽  
Xiaojun Huang ◽  
Yongbin Bao ◽  
...  

Land use/cover change (LUCC) is becoming one of the most important and interesting problems in the study of global environmental change. Identifying the spatiotemporal behavior and associated driving forces behind changes in land use is crucial for the regional sustainable utilization of land resources. In this study, we consider the four municipalities of China (Beijing, Tianjin, Shanghai, and Chongqing) and compare their spatiotemporal changes in land use from 1990 to 2015 by employing intensity analysis and barycenter migration models. We then discuss their driving forces. The results show that the largest reduction and increase variations were mainly concentrated in arable and construction land, respectively. The decrement and increment were the largest in Shanghai, followed by Beijing and Tianjin, and the least in Chongqing. Furthermore, the results of the barycenter migration model indicate that in addition to Beijing, the migration distances of construction land were longer than those of arable land in three other cities. Moreover, the application of intensity analysis revealed that the rate of land use change was also the greatest in Shanghai and the slowest in Chongqing during the whole study period, with all of their arable land being mainly transformed into construction land. The driving force analysis results suggest that the spatial and temporal patterns of land use change were the results of the socio-economic development, national policies, and major events. In other words, where there was a high rate of economic and population growth, the intensity of land use change was relatively large.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Matheus Supriyanto Rumetna ◽  
Eko Sediyono ◽  
Kristoko Dwi Hartomo

Abstract. Bantul Regency is a part of Yogyakarta Special Province Province which experienced land use changes. This research aims to assess the changes of shape and level of land use, to analyze the pattern of land use changes, and to find the appropriateness of RTRW land use in Bantul District in 2011-2015. Analytical methods are employed including Geoprocessing techniques and analysis of patterns of distribution of land use changes with Spatial Autocorrelation (Global Moran's I). The results of this study of land use in 2011, there are thirty one classifications, while in 2015 there are thirty four classifications. The pattern of distribution of land use change shows that land use change in 2011-2015 has a Complete Spatial Randomness pattern. Land use suitability with the direction of area function at RTRW is 24030,406 Ha (46,995406%) and incompatibility of 27103,115 Ha or equal to 53,004593% of the total area of Bantul Regency.Keywords: Geographical Information System, Land Use, Geoprocessing, Global Moran's I, Bantul Regency. Abstrak. Analisis Perubahan Tata Guna Lahan di Kabupaten Bantul Menggunakan Metode Global Moran’s I. Kabupaten Bantul merupakan bagian dari Provinsi Daerah Istimewa Yogyakarta yang mengalami perubahan tata guna lahan. Penelitian ini bertujuan untuk mengkaji perubahan bentuk dan luas penggunaan lahan, menganalisis pola sebaran perubahan tata guna lahan, serta kesesuaian tata guna lahan terhadap RTRW yang terjadi di Kabupaten Bantul pada tahun 2011-2015. Metode analisis yang digunakan antara lain teknik Geoprocessing serta analisis pola sebaran perubahan tata guna lahan dengan Spatial Autocorrelation (Global Moran’s I). Hasil dari penelitian ini adalah penggunaan tanah pada tahun 2011, terdapat tiga puluh satu klasifikasi, sedangkan pada tahun 2015 terdapat tiga puluh empat klasifikasi. Pola sebaran perubahan tata guna lahan menunjukkan bahwa perubahan tata guna lahan tahun 2011-2015 memiliki pola Complete Spatial Randomness. Kesesuaian tata guna lahan dengan arahan fungsi kawasan pada RTRW adalah seluas 24030,406 Ha atau mencapai 46,995406 % dan ketidaksesuaian seluas 27103,115 Ha atau sebesar 53,004593 % dari total luas wilayah Kabupaten Bantul. Kata Kunci: Sistem Informasi Georafis, tata guna lahan, Geoprocessing, Global Moran’s I, Kabupaten Bantul.


2021 ◽  
Vol 13 (9) ◽  
pp. 4599
Author(s):  
Mohd Alsaleh ◽  
Muhammad Mansur Abdulwakil ◽  
Abdul Samad Abdul-Rahim

Under the current European Union (EU) constitution approved in May 2018, EU countries ought to guarantee that estimated greenhouse-gas releases from land use, land-use change, or forestry are entirely compensated by an equivalent accounted removal of carbon dioxide (CO2) from the air during the period between 2021 and 2030. This study investigates the effect of sustainable hydropower production on land-use change in the European Union (EU28) region countries during 1990–2018, using the fully modified ordinary least squares (FMOLS). The results revealed that land-use change incline with an increase in hydropower energy production. In addition, economic growth, carbon dioxide emissions, and population density are found to be increasing land-use changes, while institutional quality is found to be decreasing land-use change significantly. The finding implies that land-use change in EU28 region countries can be significantly increased by mounting the amount of hydropower energy production to achieve Energy Union aims by 2030. This will finally be spread to combat climate change and environmental pollution. The findings are considered robust as they were checked with DOLS and pooled OLS. The research suggests that the EU28 countries pay attention to the share of hydropower in their renewable energy combination to minimize carbon releases. Politicians and investors in the EU28 region ought to invest further in the efficiency and sustainability of hydropower generation to increase its production and accessibility without further degradation of forest and agricultural conditions. The authorities of the EU28 region should emphasize on efficiency and sustainability of hydropower energy with land-use management to achieve the international commitments for climate, biodiversity, and sustainable development, reduce dependence on fossil fuel, and energy insecurity.


2021 ◽  
Vol 13 (6) ◽  
pp. 3473
Author(s):  
Yong Lai ◽  
Guangqing Huang ◽  
Shengzhong Chen ◽  
Shaotao Lin ◽  
Wenjun Lin ◽  
...  

Anthropogenic land-use change is one of the main drivers of global environmental change. China has been on a fast track of land-use change since the Reform and Opening-up policy in 1978. In view of the situation, this study aims to optimize land use and provide a way to effectively coordinate the development and ecological protection in China. We took East Guangdong (EGD), an underdeveloped but populous region, as a case study. We used land-use changes indexes to demonstrate the land-use dynamics in EGD from 2000 to 2020, then identified the hot spots for fast-growing areas of built-up land and simulated land use in 2030 using the future land-use simulation (FLUS) model. The results indicated that the cropland and the built-up land changed in a large proportion during the study period. Then we established the ecological security pattern (ESP) according to the minimal cumulative resistance model (MCRM) based on the natural and socioeconomic factors. Corridors, buffer zones, and the key nodes were extracted by the MCRM to maintain landscape connectivity and key ecological processes of the study area. Moreover, the study showed the way to identify the conflict zones between future built-up land expansion with the corridors and buffer zones, which will be critical areas of consideration for future land-use management. Finally, some relevant policy recommendations are proposed based on the research result.


Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Dingrao Feng ◽  
Wenkai Bao ◽  
Meichen Fu ◽  
Min Zhang ◽  
Yiyu Sun

Land use change plays a key role in terrestrial systems and drives the process of ecological pattern change. It is important to investigate the process of land use change, predict land use patterns, and reveal the characteristics of land use dynamics. In this study, we adopted the Markov model and future land use (FLUS) model to predict the future land use conditions in Xi’an city. Furthermore, we investigated the characteristics of land use change from a novel perspective, i.e., via establishment of a complex network model. This model captured the characteristics of the land use system during different periods. The results indicated that urban expansion and cropland loss played an important role in land use pattern change. The future gravity center of urban development moved along the opposite direction to that from 2000 to 2015 in Xi’an city. Although the rate of urban expansion declined in the future, urban expansion remained the primary driver of land use change. The primary urban development directions were east-southeast (ENE), north-northeast (NNE) and west-southwest (WSW) from 1990 to 2000, 2000 to 2015, and 2015 to 2030, respectively. In fact, cropland played a vital role in land use dynamics regarding all land use types, and the stability of the land use system decreased in the future. Our study provides future land use patterns and a novel perspective to better understand land use change.


2021 ◽  
Author(s):  
Peter H. Verburg ◽  
Žiga Malek ◽  
Sean P. Goodwin ◽  
Cecilia Zagaria

The Conversion of Land Use and its Effects modeling framework (CLUE) was developed to simulate land use change using empirically quantified relations between land use and its driving factors in combination with dynamic modeling of competition between land use types. Being one of the most widely used spatial land use models, CLUE has been applied all over the world on different scales. In this document, we demonstrate how the model can be used to develop a multi-regional application. This means, that instead of developing numerous individual models, the user only prepares one CLUE model application, which then allocates land use change across different regions. This facilitates integration with the Integrated Economic-Environmental Modeling (IEEM) Platform for subnational assessments and increases the efficiency of the IEEM and Ecosystem Services Modeling (IEEMESM) workflow. Multi-regional modelling is particularly useful in larger and diverse countries, where we can expect different spatial distributions in land use changes in different regions: regions of different levels of achieved socio-economic development, regions with different topographies (flat vs. mountainous), or different climatic regions (dry vs humid) within a same country. Accounting for such regional differences also facilitates developing ecosystem services models that consider region specific biophysical characteristics. This manual, and the data that is provided with it, demonstrates multi-regional land use change modeling using the country of Colombia as an example. The user will learn how to prepare the data for the model application, and how the multi-regional run differs from a single-region simulation.


Sign in / Sign up

Export Citation Format

Share Document