scholarly journals Developing processes for manufacturing metal aviation technology components using powder bed fusion methods

2019 ◽  
Vol 298 ◽  
pp. 00116 ◽  
Author(s):  
Anastasia Filatova ◽  
Tatiana Tarasova ◽  
Pavel Peretyagin

Favorable parameters for selective melting methods using electron and laser radiation have been established to obtain the required geometric, physical and mechanical characteristics of thin-walled parts for aviation purposes from H18N9T (analogue AISI 321) and Ti6Al4V alloys. Parts were manufactured and field tests were carried out on the stand. It has been shown that the technological processes developed using the SLM and SEBM methods can be recommended for the manufacture of thin-walled parts working in conditions of rapidly changing deformations.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
José M. Zea Pérez ◽  
Jorge Corona-Castuera ◽  
Carlos Poblano-Salas ◽  
John Henao ◽  
Arturo Hernández Hernández

Purpose The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF). Design/methodology/approach Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies. Findings The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed. Originality/value This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.


2019 ◽  
Vol 4 (4) ◽  
pp. 451-463 ◽  
Author(s):  
Eberhard Abele ◽  
Thorsten Reiber ◽  
Manfred Hampe ◽  
María Catalina Bermúdez Agudelo ◽  
Fabian Menz

2020 ◽  
Vol 4 (3) ◽  
pp. 91
Author(s):  
Josef Tomas ◽  
Leonhard Hitzler ◽  
Marco Köller ◽  
Jonas von Kobylinski ◽  
Michael Sedlmajer ◽  
...  

Laser-Powder Bed Fusion brings new possibilities for the design of parts, e.g., cutter shafts with integrated cooling channels close to the contour. However, there are new challenges to dimensional accuracy in the production of thin-walled components, e.g., heat exchangers. High degrees of dimensional accuracy are necessary for the production of functional components. The aim is to already achieve these during the process, to reduce post-processing costs and time. In this work, thin-walled ring specimens of H13 tool steel are produced and used for the analysis of dimensional accuracy and residual stresses. Two different scanning strategies were evaluated. One is a stripe scan strategy, which was automatically generated and provided by the machine manufacturer, and a (manually designed) sectional scan strategy. The ring segment strategy is designed by manually segmenting the geometry, which results in a longer preparation time. The samples were printed in different diameters and analyzed with respect to the degree of accuracy and residual stresses. The dimensional accuracy of ring specimens could be improved by up to 81% with the introduced sectional strategy compared to the standard approach.


2021 ◽  
Vol 2077 (1) ◽  
pp. 012024
Author(s):  
A S Raznoschikov ◽  
A A Voznesenskaya ◽  
D A Kochuev ◽  
M N Gerke ◽  
R V Chkalov

Abstract In this paper presents the results of studying the powder material AISI 321. Selective laser melting (SLM) of the samples was carried out in modes with a change in the radiation power. The subsequent processing of the samples by the method of hot isostatic pressing (HIP) was carried out. The roughness of the surfaces and the microhardness of the samples before and after the HIP were studied.


Author(s):  
Vladilen Petrov ◽  
Roman Mishchenko ◽  
Dmitry Pimenov

Experimental studies and field tests indicate that the effect of corrosive media leads to significant changes in the physical and mechanical characteristics of structural materials. The article proposes a mathematical model that allows predicting the negative impact of aggressive media and assessing the durability of bent structures.


Sign in / Sign up

Export Citation Format

Share Document