scholarly journals Diagnostics of Solar Cells

2019 ◽  
Vol 302 ◽  
pp. 01013
Author(s):  
Valeriy Martynyuk ◽  
Juliy Boiko ◽  
Marcin Łukasiewicz ◽  
Ewa Kuliś ◽  
Janusz Musiał

The paper represents the mathematical model for diagnostics of solar cell. The research objectives are the problem of determining a solar cell technical condition during its operation. The solar cell diagnostics is based on the mathematical model of solar cells. The single-diode solar cell model is characterized by a slight deviation of the theoretically calculated characteristics from the characteristics of the real solar cell, one of the reasons being the complexity of the accurate measurement of the series resistance. The single-diode solar cell model uses the current and voltage ratio in the form of an implicit function and it cannot be solved directly. For its solution it is necessary to use numerical methods. This is main disadvantage of the single-diode solar cell model. The methodological approach to increasing the reliability of the solar cell diagnostic has been proposed, in terms of multi-parameter the solar cell diagnostic by applying the solar cell impedance model.

2019 ◽  
Vol 302 ◽  
pp. 01014
Author(s):  
Valeriy Martynyuk ◽  
Michał Liss ◽  
Joanna Wilczarska

The paper represents the mathematical model for diagnostics of the corrosion protection potential for the electric water heaters (EWH). The research objectives are the problem of determining the EWH corrosion protection technical condition during its operation. The EWH corrosion protection diagnostics is based on the mathematical model of the corrosion protection potential for EWH. The model is based on the nonlinear equivalent circuit which is modelling the nonlinear impedance of the corrosion cathodic protection. In the development of the mathematical model the authors carried out experimental measurements of the impedance for the EWH body fragment. The obtained experimental results show that mathematical model includes the fractional integrating elements. By using of the experimental results the expressions of the impedance, the impulse response is obtained. The methodological approach to increasing the reliability of the EWH corrosion protection diagnostics has been proposed, in terms of the multi-parameter diagnostics, by applying the EWH corrosion protection impedance model.


2018 ◽  
Vol 182 ◽  
pp. 01009 ◽  
Author(s):  
Valeriy Martynyuk ◽  
Oleksander Eromenko ◽  
Juliy Boiko ◽  
Tomasz Kałaczyński

The paper represents the mathematical model for diagnostics of supercapacitors. The research objectives are the problem of determining a supercapacitor technical condition during its operation. The general reliability of diagnostics is described as the methodological and instrumental reliabilities of diagnostics. The instrumental diagnostic reliability of supercapacitor includes the probabilities of errors of the first and second kind, α and β respectively. The methodological approach to increasing the reliability of supercapacitor diagnostic has been proposed, in terms of multi-parameter supercapacitor diagnostic by applying nonlinear, frequency dependent mathematical models of supercapacitors that take into account nonlinearity, frequency dispersion of parameters and the effect of transient processes in supercapacitors. The more frequencies, operating voltages and currents are applied in the supercapacitor diagnostics, the more methodological reliability of diagnostics will increase in relation to the methodological reliability of supercapacitor diagnostics when only one frequency, voltage and current are applied.


Author(s):  
M. Kasemann ◽  
L.M. Reindl ◽  
B. Michl ◽  
W. Warta ◽  
A. Schütt ◽  
...  

Abstract Conventional series resistance imaging methods require electrical contacts for current injection or extraction in order to generate lateral current flow in the solar cell. This paper presents a new method to generate lateral current flow in the solar cell without any electrical contacts. This reduces the sample handling complexity for inline application and allows for measurements on unfinished solar cell precursors.


2018 ◽  
Vol 170 ◽  
pp. 01010 ◽  
Author(s):  
Rustam Khayrullin ◽  
Pavel Ivanov

The mathematical model is considered for the formation and implementation of development strategies of the stock of control and measuring instruments (CMI) applied in construction and housing and communal services(HCS), and step-by-step control of efficiency target values of the stock. The model is based on a system of finite - difference equations describing the change of number of the CMI samples with different levels of technical perfection and technical condition at each planning interval. The model allows calculating the required number of CMI for procurement and repairs in the various groups for provide target values of efficiency indices at each planning interval. Controller is number of modern CMI samples for procurement and number of modern and obsolete faulty CMI samples for the repairs. The results of calculations are presented.


2020 ◽  
Vol 14 ◽  

T Perovskite solar cells are becoming a dominant alternative for the traditional solar cells reaching an efficiency of 25.2% in a short span of twelve years (2008-2020). Here, we are going to describe a simple process to 'put a voice on a laser beam' and transmit it over a distance via a perovskite solar cell. This process considered as a fascinating example of amplitude modulation of light using sound vibrations. Therefore, the design and simulation of the perovskite solar cell will be described in details in this work. This design is concerned about the lead-free based perovskite solar cell model with the total proposed structure “Metal contact /PEDOT:PSS/ CH3NH3SnI3/ ZnO/ SnO2:F/ Metal contact”. To study the efficiency and the performances of a solar cell, the use of well-known software so-called SCAPS-1D is undertaken to perform the system simulation. The obtained results show also the influence of the doping level of the HTM layer and absorber layer thickness on the performance of the device. So far, only the simulation part has been validated. Despite the costeffect of the system prototype, however, it could be implemented here in the laboratory as perspective work.


2013 ◽  
Vol 199 ◽  
pp. 279-284
Author(s):  
Stanisław Kachel

The paper presents the methodological approach to development of curves by selection of driving parameters with the application of the method to designing and reproduction of aircraft surfaces on the examples of both newly designed aircrafts and the ones that are already in service. The major assumptions are outlined that are necessary to develop the mathematical model of driving curves and surfaces, these assumptions served as the basis to draw up the relevant algorithms and to convert them to routines of the GRIP (Graphics Interactive Programming) language that is a part of the CAD/CAM/CAE Unigraphics system. These algorithms include the newly developed tool dedicated to design aircraft components and provided with inputs to the multi-criteria synthesis of the aerodynamic profiles of aircrafts. The study comprises also the assumptions to the newly developed algorithms dedicated to modelling of components incorporated into aircraft structures, these algorithms have been successfully implemented by the author.


2021 ◽  
Author(s):  
Khalil ElKhamisy ◽  
Salah Elagooz ◽  
El-Sayed El-Rabaie ◽  
Hamdy Abdelhamid

Abstract Thin film Si solar cell and surface plasmon polaritons (SPPs) effects on solar cell efficiency, series resistance and shunt resistance are studied and analyzed in this work. The different surface plasmon polaritons (SPPs) shapes and their effects on the optical, electrical properties and therefore on the efficiency of thin film solar cell are studied in this work. This study is introduced using 3D numerical simulation results. The semiconductor and electromagnetic models are incorporated for studying the electrical and optical behaviors of the thin film solar cells, respectively. A 14.76% efficiency is obtained for triangle’ SPPs of about 1.07% of efficiency improvement compared to solar cell of SPPs free. The solar cell electrical parameters also are extracted in this work based on a single diode equivalent model. The series resistance is enhanced for solar cells of equilateral triangle SPP by 3% compared to the non-applied SPPs.


2021 ◽  
Author(s):  
Kaustuv Dasgupta ◽  
Utpal Gangopadhyay ◽  
Anup Mondal ◽  
Soma Ray

Abstract For the last few decades scientists across the world have achieved significant improvement in performance of conventional silicon p-n junction solar cell. Sophisticated high temperature doping technology is unavoidable in the fabrication of these conventional solar cells. Back in 1970s scientists proposed an alternative solar cell technology with Schottky barrier which can cut down the burden on thermal budget of manufacturing process. Later the metal-semiconductor Schottky barrier further modified with hetero junction semiconductor-semiconductor solar cells. A thin intrinsic layer sandwiched between semiconductor-semiconductor junctions can repair the junction defect efficiently. These SIS solar cells became popular for its low thermal budget and considerable efficiency. In this paper we have tried to propose a mathematical model of a novel dual side SIS solar cell which is basically a multi junction solar cell. We have introduced a third semiconductor layer (SnO) at the back side of the cell which can provide an inversion layer much similar to PERT solar cell. This structure is first of its kind and thus a theoretical analysis is required before implementation. We have studied the effect of this back field on the performance of the cell and propose a mathematical model based on reciprocity theorem of charge collection. The efficiency of conventional ZnO-pSi SIS solar cell was computed ~ 5.2% while the back SnO p+ layer is expected to enhance the efficiency up to ~ 7.9% according to our mathematical model. We have concluded with significant mathematical justification to implement this structure with proposed electro-chemical experiments.


1999 ◽  
Vol 1 (2) ◽  
pp. 117-129
Author(s):  
Gamal M. Eldallal ◽  
Mohamed Y. Feteha ◽  
Mostafa E. Mousaa

A realistic distributed equivalent circuit for the buried emitter silicon solar cell is presented taking into consideration the carriers paths through the planar and vertical junctions. In addition, a new theoretical model for the cell characteristics including the cell's mismatching, series resistance, different junctions (planar and vertical) and junctions geometry is considered in this work. The results are compared with the published data.


Sign in / Sign up

Export Citation Format

Share Document