scholarly journals How many RPAS can be safely integrated in non–segregated airspace?

2019 ◽  
Vol 304 ◽  
pp. 05003
Author(s):  
Javier A. Pérez–Castán ◽  
Fernando Gómez Comendador ◽  
Alvaro Rodriguez–Sanz ◽  
Rosa M. Arnaldo ◽  
Jaime Torrecilla

The forthcoming integration of Remotely Piloted Aircraft System (RPAS) is one of the cmost omplex challenges for aviation. Europe draws to allow operating RPAS and conventional aircraft in non-segregated airspace by 2025, but this demanding perspective entails a thorough analysis of the different aspects involved. The RPAS integration in non-segregated airspace cannot imply an increase in the safety levels. This paper assesses how the RPAS integration affects safety levels. The goal is to regulate the number of RPAS that can jointly operate with conventional aircraft regarding conflict risk. This approach benchmarks a Calculated Level of Safety (CLS) with a Target Level of Safety (TLS). Monte Carlo (MC) simulations quantify the TLS based on schedules of conventional aircraft. Then, different combinations of conventional aircraft and RPAS provide different CLS. MC simulations are performed based on probabilistic distributions of aircraft performances, entry times and geographical distribution of aircraft. The safety levels are based on a conflict-risk model because the primary metrics are average number of conflicts and average conflict duration. The methodology is applied to one flight level of en-route airspace. The results provide restrictions to the number of RPAS that can jointly operate with conventional aircraft. Particularly, the TLS is quantified for four conventional aircraft and MC simulations provide the combinations of conventional aircraft and RPAS that fulfil the CLS. The same number of RPAS than conventional aircraft shows an increase over 90% average number of conflicts and 300% average conflict time.


2020 ◽  
Vol 92 (6) ◽  
pp. 801-806 ◽  
Author(s):  
Javier A. Pérez-Castán ◽  
Fernando Gómez Comendador ◽  
Álvaro Rodríguez-Sanz ◽  
Rosa M. Arnaldo Valdés ◽  
Jose Felix Alonso-Alarcon

Purpose This paper aims to assess the implications in safety levels by the integration of remotely piloted aircraft system (RPAS). The goal is to calculate the number of RPAS that can jointly operate with conventional aircraft regarding conflict risk, without exceeding current safety levels. Design/methodology/approach This approach benchmarks a calculated level of safety (CLS) with a target level of safety (TLS). Monte Carlo (MC) simulations quantify the TLS based on the current operation of conventional aircraft. Then, different experiments calculate the CLS associated with combinations of conventional aircraft and RPAS. MC simulations are performed based on probabilistic distributions of aircraft performances, entry times and geographical distribution. The safety levels are based on a conflict risk model because the safety metrics are the average number of conflicts and average conflict duration. Findings The results provide restrictions to the number of RPAS that can jointly operate with conventional aircraft. The TLS is quantified for four conventional aircraft. MC simulations confirm that the integration of RPAS demands a reduction in the total number of aircraft. The same number of RPAS than conventional aircraft shows an increase over 90% average number of conflicts and 300% average conflict time. Research limitations/implications The methodology is applied to one flight level of en-route airspace without considering climbing or descending aircraft. Originality/value This paper is one of the most advanced investigations performed to quantify the number of RPAS that can be safely integrated into non-segregated airspace, which is one of the challenges for the forthcoming integration of RPAS. Particularly, Europe draws to allow operating RPAS and conventional aircraft in non-segregated airspace by 2025, but this demanding perspective entails a thorough analysis of operational and safety aspects involved.



2018 ◽  
Vol 41 (2) ◽  
pp. 506-514 ◽  
Author(s):  
Luis García-Hernández ◽  
Cristina Cuerno-Rejado ◽  
Manuel Pérez-Cortés


Author(s):  
Javier A Pérez-Castán ◽  
Fernando G Comendador ◽  
Álvaro Rodriguez-Sanz ◽  
Rosa M Arnaldo Valdés ◽  
Gonzalo Agueda

The integration of remotely piloted aircraft system in non-segregated airspace requires a significant effort and new methodologies to underway this challenge. This paper develops a methodology to assess the impact of remotely piloted aircraft system integration by applying safety metrics in tactical planning. This methodology builds five modules to simulate remotely piloted aircraft system introduction in a conventional-aircraft schedule: Base scenario, path modelling, conflict detection, temporary-blocking window and safety metrics. The safety metrics quantify the safety state of the operation by the number of conflicts, the conflict severity and the airway availability. This last safety metric represents a step forward in the decision-making process because it provides the airway risk-suitability to integrate remotely piloted aircraft system. Moreover, the temporary-blocking window underlies the airway availability metric. This concept provides temporary restrictions to the integration of remotely piloted aircraft system depending on the entry times of the conventional aircraft. Finally, this methodology is applied in an air traffic volume of the Spanish upper airspace. Different simulations were performed by introducing remotely piloted aircraft system covering every airway of the airspace. Results provided the temporary-blocking windows that specified the temporary restrictions to remotely piloted aircraft system introduction as a function of the airway flown by the conventional aircraft. Furthermore, the methodology appraised the airway availability characterising the airways depending on the risk impact by the remotely piloted aircraft system.



2016 ◽  
Vol 8 (1) ◽  
pp. 73-86 ◽  
Author(s):  
M. Bolognesi ◽  
G. Farina ◽  
S. Alvisi ◽  
M. Franchini ◽  
A. Pellegrinelli ◽  
...  


2021 ◽  
Vol 27 (3) ◽  
pp. 83-91
Author(s):  
Laurențiu-Răducu Popescu

Abstract The paper presents the technologies currently available on the market in the field of anti-drone systems (C-RPAS -Counter Remotely Piloted Aircraft System). These include technologies with the help of radar, audio interception systems or via infrared and electro-optical devices, which are limited in remote sensing. The purpose of this paper was to highlight the multitude of factors that can influence the main mission of C-RPAS systems, the detection. Without detection the other features of a C-RPAS system could not be applied. I used specialized documents and studies, but also comparative analysis as research methods. The results of the study confirmed to me the hypothesis that anti-drone systems use in combination, one or more of the technologies (to detect, to recognize, to identify, to locate, to block, to capture or to destroy the drone). The first four (the detection, the recognition, the identification, the localization) are in the basic configuration for any C-RPAS system. In the future, there will be a challenge (for the producers of C-RPAS systems), the capture of the RPAS, especially the military ones. It is also important to prepare the operators / beneficiaries for such systems. They can influence the effectiveness of drone combat missions.



Author(s):  
Dan Jakubek ◽  
Jimmy Tran

On June 1, 2019, new rules for flying a Remotely Piloted Aircraft System (RPAS) or “drone” in Canada came into effect, requiring drone pilot certification to operate any drone between 250 g and 25 kg. In response to new regulations and the needs of our researchers, the Ryerson Library has initiated the development of a research service dedicated to supporting the use of drones and 3D modeling technologies. Before cancellation due to the Covid-19 pandemic, the joint CAG/CCA/CARTO-ACMLA conference - CAG 2020: Resilience on a Dynamic Planet - provided a national venue to showcase our progress to date. This report will summarize our workshop content and outline existing collaborations and future directions for our research and service.



Sign in / Sign up

Export Citation Format

Share Document