scholarly journals Investigation of a Temperature Field of the Steel Billet 150x150 mm Continuously Cast

2020 ◽  
Vol 328 ◽  
pp. 03002
Author(s):  
František Kavička ◽  
Jaroslav Katolický ◽  
Josef Štětina ◽  
Tomáš Mauder ◽  
Lubomír Klimeš

The solidification and cooling of a continuously cast billet and the simultaneous heating of the mold is a very complicated problem of three-dimensional (3D) transient heat and mass transfer. The solving of uch a problem is impossible without numerical models of the temperature field of the concasting itself which it is being processed through the concasting machine (caster). The application of the numerical model requires systematic experimentation and measurement of operational parameters on a real caster as well as in the laboratory. The measurement results, especially temperatures, serve not only for the verification of the exactness of the model, but mainly for optimization of the process procedure. The most important part of the investigation is the measurement of the temperatures in the walls of the mold and the surface of the slab in the zones of secondary and tertiary cooling.

2018 ◽  
Vol 168 ◽  
pp. 07009
Author(s):  
Josef Štětina ◽  
František Kavička ◽  
Jaroslav Katolický ◽  
Tomáš Mauder ◽  
Lubomír Klimeš

The solidification and cooling of a continuously cast billet, slab or cylinder, generally of a concasting and the simultaneous heating of the mold is a very complicated problem of three-dimensional (3D) transient heat and mass transfer. The solving of such a problem is impossible without numerical models of the temperature field of the concasting itself which it is being processed through the concasting machine (caster). The application of the numerical model requires systematic experimentation and measurement of operational parameters on a real caster as well as in the laboratory. The measurement results, especially temperatures, serve not only for the verification of the exactness of the model, but mainly for optímization of the process procedure: real process → input data → numerical analyses → optimization → correction of real process. The most important part of the investigation is the measurement of the temperatures in the walls of the mold and the surface of the slab in the zones of secondary and tertiary cooling.


Metallurgist ◽  
2021 ◽  
Author(s):  
D. A. Pumpyanskiy ◽  
S. V. Tyutyunik ◽  
E. A. Kolokolov ◽  
A. A. Mescheryachenko ◽  
I. S. Murzin ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 165 ◽  
Author(s):  
Fabrice Beya ◽  
Mamert Mbonimpa ◽  
Tikou Belem ◽  
Li Li ◽  
Ugo Marceau ◽  
...  

The mechanical behavior of cemented paste backfill (CPB) in permafrost regions may depend on the thermal curing conditions. However, few experimental data are available for calibrating and validating numerical models used to predict these conditions. To fill this gap, a three-dimensional (3D) laboratory heat transfer test was conducted on CPB placed in an instrumented barrel and cured under a constant temperature of −11 °C. Results were used to calibrate and validate a numerical model built with COMSOL Multiphysics®. The model was then used to predict the evolution of the temperature field for CPB cured under the thermal boundary conditions for a backfilled mine stope in the permafrost (at −6 °C). Numerical results indicated that the CPB temperature gradually decreased with time such that the entire CPB mass was frozen about five years after stope backfilling. However, the permafrost equilibrium temperature of −6 °C was not reached throughout the entire CPB mass even after 20 years of curing. In addition, the evolution of the temperature field in the permafrost rock showed that the thickness of the thawed portion reached about 1 m within 120 days. Afterwards, the temperature continues to drop over time and the thawed portion of the permafrost refreezes after 365 days.


Author(s):  
Josef Stetina ◽  
Frantisek Kavicka ◽  
Bohumil Sekanina ◽  
Jaromir Heger

Solidification and cooling of a (con)casting, with the simultaneous heating of the mold, is a case of transient spatial heat and mass transfer. This paper introduces an original and universal numerical model of solidification, cooling and heating, of a one-to-three-dimensional stationary and transient temperature field in a system comprising the casting, the mold and its surroundings. This model simulates both traditional as well as non-traditional technologies of casting conducted in foundries, metallurgical plants, forging operations, heat-treatment processes, etc. The casting process is influenced not only by the thermophysical properties (i.e. heat conductivity, the specific heat capacity and density in the solid and liquid states) of the metallic and non-metallic materials, but also by the precision with which the numerical simulation is conducted. Determining these properties is often more demanding than the actual calculation of the temperature field of the solidifying object. Since the influence of individual properties should be neither under- nor over-estimated, it is necessary to investigate them via a parametric study. It is also necessary to determine the order of these properties in terms of their importance.


Author(s):  
Frantisek Kavicka ◽  
Josef Stetina ◽  
Karel Stransky ◽  
Jana Dobrovska ◽  
Vera Dobrovska ◽  
...  

This paper introduces the application of two three-dimensional (3D) numerical models of the temperature field of a caster. The first model simulates the temperature field of a caster—either as a whole, or any of its parts. Experimental research and data acquisition take place simultaneously with the numerical computation in order to enhance the numerical model and to perfect it in the course of the process. In order to apply the second original numerical model—a model of dendritic segregation of elements—it is necessary to analyze the heterogeneity of samples of the constituent elements and impurities in characteristic places of the solidifying slab. The samples are taken from places, which provide information on the distribution of elements under both standard and extreme conditions for solidification, where the mean solidification (crystallization) rate is known for points between the solidus and liquidus curves. Using this method, it is possible to forecast the occurrence of the critical points of a slab from the viewpoint of its susceptibility to crack and fissure. Verification of the technological impact of optimization, resulting from both models, is conducted on a real industrial caster.


Author(s):  
Gustavo Gutie´rrez ◽  
Juan Guillermo Araya

Phase change problems are encountered in several manufacturing and material processing applications. Such problems are computationally challenging because it is necessary to solve a non-linear heat conduction equation and take into considerations the conditions needed to produce material ablation, varying continuously the heat source position, thermo physical properties and physical shape of the domain. This research presents a numerical simulation of the temperature field and the removed material resulting from the impingement of a moving laser beam on a ceramic surface. A finite volume approach has been developed to predict the temperature field including phase changes generated during the process. The model considers heat losses by convection and radiation due to the high temperatures involved and uses a coordinate system affixed to the workpiece; therefore no quasi-steady conditions are assumed, as in the majority of previous works. Numerical predictions were compared with former three-dimensional numerical models considering a semi-infinite solid and from experimental data found in the literature. This study gives insight into the interactions between the laser beam and a silicon nitride workpiece during the cutting.


2000 ◽  
Vol 27 (1) ◽  
pp. 37-54 ◽  
Author(s):  
C.A.M. Pinheiro ◽  
I.V. Samarasekera ◽  
J.K. Brimacomb ◽  
B.N. Walker

Sign in / Sign up

Export Citation Format

Share Document