scholarly journals Improved recursive DV-Hop localization algorithm for average hop distance optimization

2021 ◽  
Vol 336 ◽  
pp. 07014
Author(s):  
Keqiang Ren ◽  
Panpan Wang

Aiming at the problem of DV-HOP algorithm with error and energy exhaustion, the average hop distance is used for optimization, and an improved recursion method is used to solve it. The algorithm first squares the distance of anchor nodes, proposes a forgetting factor to optimize the average hop distance between anchor nodes, and secondly uses recursive operations to replace anchor nodes with insufficient energy, so that the localization process of unknown nodes can continue. Experimental results show that compared with the DV-Hop algorithm and the algorithms in related literature, the improved algorithm can reduce the localization error to a certain extent and improve the localization accuracy of unknown nodes.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Iram Javed ◽  
Xianlun Tang ◽  
Kamran Shaukat ◽  
Muhammed Umer Sarwar ◽  
Talha Mahboob Alam ◽  
...  

In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.


2012 ◽  
Vol 155-156 ◽  
pp. 445-449
Author(s):  
Fu Cai Wan ◽  
Yu Ji Shen

Node positioning technology in wireless sensor network plays an important role in the whole network, and a lot of scholars engage in this field. According to the background that wireless sensor network is applied in Three-Dimensional space, an improved algorithm is proposed in this paper. The algorithm makes the average distance of each hop more rational through choosing the external anchor nodes. After the achievement of the unknown nodes positioning, initial positioning location would be corrected in order to get a higher positioning accuracy. Simulation results show that the accuracy of the improved algorithm is 13% higher than the traditional DV-Hop algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1574 ◽  
Author(s):  
Jerzy Kolakowski ◽  
Vitomir Djaja-Josko ◽  
Marcin Kolakowski ◽  
Katarzyna Broczek

Localization systems are the source of data that allows to evaluate elderly person’s behaviour, to draw conclusions concerning his or her health status and wellbeing, and to detect emergency situations. The article contains a description of a system intended for elderly people tracking. Two novel solutions have been implemented in the system: a hybrid localization algorithm and a method for wireless anchor nodes synchronization. The algorithm fuses results of time difference of arrival and received signal strength measurements in ultrawideband (UWB) and Bluetooth Low Energy (BLE) radio interfaces, respectively. The system allows to change the intensity of UWB packets transmission to adapt localization accuracy and energy usage to current needs and applications. In order to simplify the system installation, communication between elements of the system infrastructure instead of wire interfaces is performed over wireless ones. The new wireless synchronization method proposed in the article consists in retransmission of UWB synchronization packets by selected anchor nodes. It allows for extension of the system coverage, which is limited by the short range of UWB transmission. The proposed solution was experimentally verified. The synchronization method was tested in a laboratory, and the whole system’s performance was investigated in a typical flat. Exemplary results of the tests performed with older adult participation in their own homes are also included.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Chenguang Shao

The target localization algorithm is critical in the field of wireless sensor networks (WSNs) and is widely used in many applications. In the conventional localization method, the location distribution of the anchor nodes is fixed and cannot be adjusted dynamically according to the deployment environment. The resulting localization accuracy is not high, and the localization algorithm is not applicable to three-dimensional (3D) conditions. Therefore, a Delaunay-triangulation-based WSN localization method, which can be adapted to two-dimensional (2D) and 3D conditions, was proposed. Based on the location of the target node, we searched for the triangle or tetrahedron surrounding the target node and designed the localization algorithm in stages to accurately calculate the coordinate value of the target. The relationship between the number of target nodes and the number of generated graphs was analysed through numerous experiments, and the proposed 2D localization algorithm was verified by extending it the 3D coordinate system. Experimental results revealed that the proposed algorithm can effectively improve the flexibility of the anchor node layout and target localization accuracy.


Author(s):  
Ru-Lin Dou ◽  
Bo Hu ◽  
Wei-Juan Shi

Incremental multi-hop localization algorithm applies to networks with broad range and low density of anchor nodes. However, during the localization process, it tends to be affected by accumulative errors and collinear problem between anchor nodes. We have proposed an incremental multi-hop localization algorithm based on regularized weighted least squares method, and the algorithm uses weighted least squares method to reduce the influence of accumulative errors and uses regularized method to weaken the collinear problem between anchor nodes. The results of both real experiment and simulative experiment show that compared to previous incremental multi-hop localization algorithms, the algorithm proposed in this paper can not only well solve the accumulated errors problem and obtain high localization accuracy, but it has also considered the influence of collinear problem on localization computation during the localization process. We evaluate our method based on various network scenes, and analyze its performance. We also compare our method with several existing methods, and demonstrate the high efficiency of our proposed method.


2014 ◽  
Vol 998-999 ◽  
pp. 1305-1310
Author(s):  
Fei Liu ◽  
Guang Zeng Feng

The localization accuracy of traditional APIT localization algorithm for wireless sensor network depends on the Approximate Perfect Point-In-Triangulation Test (APIT), and the localization error can be promoted in sparse network. We design one improved localization algorithm (RTD-APIT) based on APIT by using the RSSI and the triangles deformation. RTD-APIT uses the RSSI to improve the APIT for achieving the preliminary location of unknown node, and expand or deform the triangles for solving the Point-In-Triangulation (PIT) problem well and enhancing the localization. Simulation shows RTD-APIT can reduce the localization error effectively, and it also promote the localization coverage.


2014 ◽  
Vol 543-547 ◽  
pp. 3256-3259 ◽  
Author(s):  
Da Peng Man ◽  
Guo Dong Qin ◽  
Wu Yang ◽  
Wei Wang ◽  
Shi Chang Xuan

Node Localization technology is one of key technologies in wireless sensor network. DV-Hop localization algorithm is a kind of range-free algorithm. In this paper, an improved DV-Hop algorithm aiming to enhance localization accuracy is proposed. To enhance localization accuracy, average per-hop distance is replaced by corrected value of global average per-hop distance and global average per-hop error. When calculating hop distance, unknown nodes use corresponding average per-hop distance expression according to different hop value. Comparison with DV-Hop algorithm, simulation results show that the improved DV-Hop algorithm can reduce the localization error and enhance the accuracy of sensor nodes localization more effectively.


2014 ◽  
Vol 687-691 ◽  
pp. 3972-3975
Author(s):  
Jing Chen ◽  
Hong Na Jia ◽  
Ming Xin Liu

To address the problem that anchor ratio had a strong impact on localization error and coverage in centroid algorithm in wireless sensor network (WSN), an improved algorithm was proposed. This algorithm differentiated the priority of the unknown nodes according to the distance between unknown nodes and anchors. The algorithm was proposed to locate the unknown nodes with the highest priority, and then update them to new anchors. Finally, the rest unknown nodes are located by centroid algorithm. The simulation results show that this improved algorithm can effectively reduce the localization error and enhance the coverage when the anchor ratio is lower.


2013 ◽  
Vol 475-476 ◽  
pp. 964-967
Author(s):  
Yong Sun ◽  
Jun Wei Zhao

To improve the localization accuracy of bistatic sonar in such districts as baseline district, and side districts of transmitting and receiving stations, the most effective method is to increase the number of transmitting and receiving stations, which forms a multistatic sonar system. The mature algorithm of multistatic sonar system which contains three measurements in one subset, calls the multistatic bearing-only localization (BOL) algorithm. This paper proposes a new algorithm of improving the bearing-only localization algorithm. The simulation results show that the proposed localization algorithm exhibits higher accuracy compared with the BOL algorithm and provides less time than it.


Sign in / Sign up

Export Citation Format

Share Document