scholarly journals Wireless Sensor Network Target Localization Algorithm Based on Two- and Three-Dimensional Delaunay Partitions

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Chenguang Shao

The target localization algorithm is critical in the field of wireless sensor networks (WSNs) and is widely used in many applications. In the conventional localization method, the location distribution of the anchor nodes is fixed and cannot be adjusted dynamically according to the deployment environment. The resulting localization accuracy is not high, and the localization algorithm is not applicable to three-dimensional (3D) conditions. Therefore, a Delaunay-triangulation-based WSN localization method, which can be adapted to two-dimensional (2D) and 3D conditions, was proposed. Based on the location of the target node, we searched for the triangle or tetrahedron surrounding the target node and designed the localization algorithm in stages to accurately calculate the coordinate value of the target. The relationship between the number of target nodes and the number of generated graphs was analysed through numerous experiments, and the proposed 2D localization algorithm was verified by extending it the 3D coordinate system. Experimental results revealed that the proposed algorithm can effectively improve the flexibility of the anchor node layout and target localization accuracy.

2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Lieping Zhang ◽  
Zhenyu Yang ◽  
Shenglan Zhang ◽  
Huanhuan Yang

Aimed at the shortcomings of low localization accuracy of the fixed multianchor method, a three-dimensional localization algorithm for wireless sensor network nodes is proposed in this paper, which combines received signal strength indicator (RSSI) and time of arrival (TOA) ranging information and single mobile anchor node. A mobile anchor node was introduced in the proposed three-dimensional localization algorithm for wireless sensor networks firstly, and the mobile anchor node moves according to the Gauss–Markov three-dimensional mobility model. Then, based on the idea of using RSSI ranging in the near end and TOA ranging in the far end, a ranging method combining RSSI and TOA ranging information is proposed to obtain the precise distance between the anchor node and the unknown node. Finally, the maximum-likelihood estimation method is used to estimate the position of unknown nodes based on the obtained ranging values. The MATLAB simulation results show that the proposed algorithm had a higher localization accuracy and lower localization energy consumption compared with the traditional RSSI localization method or TOA localization method.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2991 ◽  
Author(s):  
Jingyu Hua ◽  
Yejia Yin ◽  
Weidang Lu ◽  
Yu Zhang ◽  
Feng Li

The problem of target localization in WSN (wireless sensor network) has received much attention in recent years. However, the performance of traditional localization algorithms will drastically degrade in the non-line of sight (NLOS) environment. Moreover, variable methods have been presented to address this issue, such as the optimization-based method and the NLOS modeling method. The former produces a higher complexity and the latter is sensitive to the propagating environment. Therefore, this paper puts forward a simple NLOS identification and localization algorithm based on the residual analysis, where at least two line-of-sight (LOS) propagating anchor nodes (AN) are required. First, all ANs are grouped into several subgroups, and each subgroup can get intermediate position estimates of target node through traditional localization algorithms. Then, the AN with an NLOS propagation, namely NLOS-AN, can be identified by the threshold based hypothesis test, where the test variable, i.e., the localization residual, is computed according to the intermediate position estimations. Finally, the position of target node can be estimated by only using ANs under line of sight (LOS) propagations. Simulation results show that the proposed algorithm can successfully identify the NLOS-AN, by which the following localization produces high accuracy so long as there are no less than two LOS-ANs.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Iram Javed ◽  
Xianlun Tang ◽  
Kamran Shaukat ◽  
Muhammed Umer Sarwar ◽  
Talha Mahboob Alam ◽  
...  

In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.


2012 ◽  
Vol 155-156 ◽  
pp. 445-449
Author(s):  
Fu Cai Wan ◽  
Yu Ji Shen

Node positioning technology in wireless sensor network plays an important role in the whole network, and a lot of scholars engage in this field. According to the background that wireless sensor network is applied in Three-Dimensional space, an improved algorithm is proposed in this paper. The algorithm makes the average distance of each hop more rational through choosing the external anchor nodes. After the achievement of the unknown nodes positioning, initial positioning location would be corrected in order to get a higher positioning accuracy. Simulation results show that the accuracy of the improved algorithm is 13% higher than the traditional DV-Hop algorithm.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jiang Minlan ◽  
Luo Jingyuan ◽  
Zou Xiaokang

This paper proposes a three-dimensional wireless sensor networks node localization algorithm based on multidimensional scaling anchor nodes, which is used to realize the absolute positioning of unknown nodes by using the distance between the anchor nodes and the nodes. The core of the proposed localization algorithm is a kind of repeated optimization method based on anchor nodes which is derived from STRESS formula. The algorithm employs the Tunneling Method to solve the local minimum problem in repeated optimization, which improves the accuracy of the optimization results. The simulation results validate the effectiveness of the algorithm. Random distribution of three-dimensional wireless sensor network nodes can be accurately positioned. The results satisfy the high precision and stability requirements in three-dimensional space node location.


Author(s):  
M.G. Kavitha ◽  
Vinoth Kumar Kalimuthu ◽  
T. Jayasankar

<p><span>Localization in wireless sensor networks (WSNs) is essential in many applications like target tracking, military applications and environmental monitoring. Anchors which are equipped with global positioning system (GPS) facility are useful for finding the location information of nodes. These anchor nodes may be static or dynamic in nature. In this paper, we propose mobile anchors assisted localization algorithm based on regular hexagons in two-dimensional WSNs. We draw a conclusion that the number of anchor nodes greatly affect the performance of localization in a WSN. An optimal number of anchor nodes significantly reduces the localization error of unknown nodes and also guarantees that unknown nodes can obtain high localization accuracy. Because of the mobility of anchor nodes high volume of sensing region is covered with less period of time and hence the coverage ratio of the proposed algorithm increases. Number of communications also decreases for the reason that the system contains log<sub>e</sub> (n) number of anchor nodes which leads to less energy consumption at nodes. Simulation results show that our LUMAT algorithm significantly outperforms the localization method containing single anchor node in the network. Movement trajectories of mobile anchors should be designed dynamically or partially according to the observable environment or deployment situations to make full use of real-time information during localization. This is the future research issue in the area of mobile anchor assisted localization algorithm.</span></p>


2013 ◽  
Vol 756-759 ◽  
pp. 3562-3567
Author(s):  
Qing Zhang Chen ◽  
Yun Feng Ni ◽  
Xing Hua Li ◽  
Rong Jie Wu ◽  
Yan Jing Lei ◽  
...  

Wireless sensor node's localization is a funda-mental technology in Wireless Sensor Networks. There are only quite a few study on three-dimensional (3D) localization which is suffered in slow progress, actually, is one of the main difficulties in WSN localization. Based on the study of the existing two-dimensional positioning algorithm and the application of terrain modeling, localization algorithm for sensor nodes in (3D) condition has been focus on as well as the application of terrain model. Using the idea proposed by representative algorithm--APS multi-hop AOA (Angle of Arrival), this paper proposed a new algorithm named Multi-hop Three Dimensional AOA With Space-based Angle Trans-mission (MSAT3D AOA). Using this technology, target nodes can use information of anchor nodes which are more than one hop away form. This paper also combined MSAT3D AOA algorithm with Delaunay triangulation algorithm for terrain modeling.


2017 ◽  
Vol 14 (1) ◽  
pp. 847-857 ◽  
Author(s):  
Bassam Gumaida ◽  
Chang Liu ◽  
Juan Luo

Sensors positioning with high accuracy is a fundamental stone in Wireless Sensor Networks (WSNs). In outdoor environment which is hostile and unreachable, mobile anchors method is considered as an appropriate solution for locating unknown nodes. In this case, the key problems are the trajectory mapping and the needed number of mobile anchors. These mobile anchors should travel along the trajectory in order to determine the positions of unknown nodes with minimum localization error. In this paper, a localization algorithm named Group of Tri-Mobile Anchors (GTMA) is proposed, which is based on a group of tri-mobile anchors with adjustable square trajectory in the deployment area. The position of a target node is calculated by Trilateration. Simulation results show that the performance of the proposed algorithm GTMA is better than that of other algorithms adopted one mobile anchor, e.g., HILBERT, LMAT and SPIRAL algorithms. This is clearly evident in both the localization accuracy and trajectory planning.


Author(s):  
Medhav Kumar Goonjur ◽  
◽  
Irfan Dwiguna Sumitra ◽  
Sri Supatmi ◽  
◽  
...  

A challenging problem that arises in the Wireless Sensor Network (WSN) is localization. It is essential for applications that need information about target positions, are inside an indoor environment. The Localization scheme presented in this experiment consists of four anchor nodes that change their position coordinates and one target node that is used to control the distance. The Localization algorithm designed in this paper makes use of the combination of two algorithms; the Received Strength Signal Indication (RSSI) and Weight Centroid Localization Algorithm (WCLA), called the RSSI-WCLA algorithm. The laboratory results show that the fusion between the RSSI-WCLA algorithm is outstanding than RSSI and WCLA algorithms itself in terms of localization accuracy. However, our proposed algorithm shows that the maximum error distance is less than 0.096m.


Sign in / Sign up

Export Citation Format

Share Document