scholarly journals Mathematical modeling of the trajectory of a ship as a control object in local planning

2021 ◽  
Vol 339 ◽  
pp. 01015
Author(s):  
Oleksandr Kupraty

In the article proposes the decomposition of the global planning task in local planning. It is proposed to combine the segment method and the sector method of division of the circle to construct the ship’s trajectory in local planning. Corrective coefficients were selected for the correct geometry of the turning trajectory, combining the segment method and the sector method of constructing the ship’s trajectory. The article uses formulas of spherical trigonometry; the trajectory of the turn depends on the rudder angle, which in turn depends on the turning ability of the vessel under the given conditions. In determining the value of the angle of the rudder, the control device must take into account the ship’s turning ability in the conditions set, the value of the angle of the turn and the constrained water area. The combination of all factors allows to differentiate the ship’s turning ability such as: high HG, middle MD or low LW with regard to passage area. The ME shifting operating modes matrix proposed in the article works as a filter of modes of operation and is completely dependent on the readings of pressure, temperature and vibration sensors. The ship’s trajectory is constructed using calculations in MS Excel and graphic simulations in the MATLAB environment.

Author(s):  
G. Kalimbetov ◽  
A. Toigozhinovа ◽  
W. Wojcik

Among the promising automatic control systems, logical-dynamic control systems that change both the structure and parameters of the control device using switches formed on the basis of a certain logical algorithm have proven themselves well. The use of logical algorithms as part of MACS subsystems for complex technical objects makes it possible to increase the static and dynamic accuracy of control due to purposeful qualitative and quantitative changes in the control signal. This approach will give the control system fundamentally new properties that allow to fully take into account the nature and dynamics of the movement of the control object. When developing existing logical control algorithms, the issues of their application for multi-connected and multifunctional objects control were not considered. Common to existing logical algorithms is that when switching the structure and/or changing parameters, only the dynamics of its own subsystem is taken into account, which is unacceptable in the case of multi-connected dynamic object control, since cross-links have a significant impact on the quality of control. Thus, the problem of synthesis of logical algorithms for multi-connected objects control is an actual theoretical and applied problem. Despite the considerable amount of research conducted in this area, the application of logical algorithms for complex multidimensional objects control is not sufficiently considered, and there is no unified design concept for this type of MACS, taking into account the required quality of functioning in various operating modes. In this regard, there is a need to synthesize algorithms for logical multi-connected control that form control signals in order to coordinate the actions of all separate MACS subsystems in accordance with new external conditions and operating modes. The problem under consideration determined the purpose of this work and the research objectives.


Author(s):  
Hongxin Zhang ◽  
Rongzijun Shu ◽  
Guangsen Li

Background: Trajectory planning is important to research in robotics. As the application environment changes rapidly, robot trajectory planning in a static environment can no longer meet actual needs. Therefore, a lot of research has turned to robot trajectory planning in a dynamic environment. Objective: This paper aims at providing references for researchers from related fields by reviewing recent advances in robot trajectory planning in a dynamic environment. Methods: This paper reviews the latest patents and current representative articles related to robot trajectory planning in a dynamic environment and introduces some key methods of references from the aspects of algorithm, innovation and principle. Results: In this paper, we classified the researches related to robot trajectory planning in a dynamic environment in the last 10 years, introduced and analyzed the advantages of different algorithms in these patents and articles, and the future developments and potential problems in this field are discussed. Conclusion: Trajectory planning in a dynamic environment can help robots to accomplish tasks in a complex environment, improving robots’ intelligence, work efficiency and adaptability to the environment. Current research focuses on dynamic obstacle avoidance, parameter optimization, real-time planning, and efficient work, which can be used to solve robot trajectory planning in a dynamic environment. In terms of the combination of multiple algorithms, multi-sensor information fusion, the combination of local planning and global planning, and multi-robot and multi-task collaboration, more improvements and innovations are needed. It should create more patents on robot trajectory planning in a dynamic environment.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kazuhiko Hiramoto

A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with the semiactive control device. A design method to determine the active control input and the command signal to drive the semiactive control device based on the one-step prediction of the control output is proposed. A simulation example of a control system design for a benchmark building is presented to show the effectiveness of the proposed control framework.


2020 ◽  
Vol 7 (3) ◽  
pp. 140-155
Author(s):  
Ismael Saeed ◽  
◽  
Azad Mohammed

This paper proposes a method of calculating of asymmetrical modes of operation of electrical installations where simple and adequate loads equivalent circuits are available with working electrical equipment. So the mathematical model of equation system is derived as universal way for calculating the systems operating modes when it is subjected to a disturbance due to asymmetry. With the help of the obtained model we can calculate different cases of symmetry disturbances, all types of short circuits, between phase short circuits, any type of longitudinal asymmetry, open circuits when there is a resistance for the fault current at the place of damage In the given method, specific types of asymmetry are considered as particular cases and easily calculated from the generalized formula, which is essentially reduces the calculation and allows us to consider cases of asymmetry of any complexity. Therefore this method is offered as a basic for calculation of asymmetry when the system is subjected to a disturbance.


2019 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
Dwiky Erlangga ◽  
Endang D ◽  
Rosalia H S ◽  
Sunarto Sunarto ◽  
Kuat Rahardjo T.S ◽  
...  

<p><em>Autonomous navigation is absolutely necessary in mobile-robotic, which consists of four main components, namely: perception, localization, path-planning, and motion-control. Mobile robots create maps of space so that they can carry out commands to move from one place to another using the autonomous-navigation method. Map making using the Simultaneous-Localization-and-Mapping (SLAM) algorithm that processes data from the RGB-D camera sensor and bumper converted to laser-scan and point-cloud is used to obtain perception. While the wheel-encoder and gyroscope are used to obtain odometry data which is used to construct travel maps with the SLAM algorithm, gmapping and performing autonomous navigation. The system consists of three sub-systems, namely: sensors as inputs, single-board computers for processes, and actuators as movers. Autonomous-navigation is regulated through the navigation-stack using the Adaptive-Monte-Carlo-Localization (AMCL) algorithm for localization and global-planning, while the Dynamic-Window-Approach (DWA) algorithm with Robot-Operating-System-(ROS) for local -planning. The results of the test show the system can provide depth-data that is converted to laser-scan, bumper data, and odometry data to single-board-computer-based ROS so that mobile-controlled teleoperating robots from workstations can build 2-dimensional grid maps with total accuracy error rate of 0.987%. By using maps, data from sensors, and odometry the mobile-robot can perform autonomous-navigation consistently and be able to do path-replanning, avoid static obstacles and continue to do localization to reach the destination point.</em></p>


2010 ◽  
Vol 154-155 ◽  
pp. 545-552
Author(s):  
Hua Ping Xu ◽  
Yong Ming Bian ◽  
Xie Min Mao

Directional solidification continuous casting (DSCC) processing is steady directional growth process of Cu crystal. It was influenced by seven parameters, and very easy to be broken for some disturbance. Therefore, random crystals grew. In this paper, location of liquid-solid interface Z was set as control object. And correction disturbance closed-loop control was set as general control planning in DSCC processing. Then fuzzy control was selected as control mode. And control algorithm was designed. The closed-loop control process in DSCC processing was simulated. The simulation results showed that control object could return to safe rang even existing random disturbance. And the control process had good stability. Designed fuzzy control device could satisfy DSCC process requirement.


2018 ◽  
Vol 23 (2) ◽  
pp. 150-160
Author(s):  
Alexey Grigorev ◽  
Alexey Lysenko ◽  
Igor Kochegarov ◽  
Vladimir Roganov ◽  
Jurijs Lavendels

Abstract The relevance and nature of a new technology for measurement of vibrational displacement of a material point through normal toward the object plane are stated in the article. This technology provides registration and processing of images of a round mark or a matrix of round marks, which are applied to the surface of a control object. A measuring signal here is the module of radius increment of the round mark image at vibrational blurring of this image. The method for calculation of the given error of measurements, as a function of a number of pixels of the round mark image, has been developed and proven in the present research. The results of pilot studies are given. Linearity of transformation of the measured size into a measuring signal has been proven. The conditions of a technical compromise between the field of view area of a recording device during distribution measurement of vibrational displacements along the surface of a control object, and the accuracy of this measurement are determined. The results are illustrated with numerical examples of calculations of the given error of measurements in the set field of view and the one at the given maximum set error of measurements.


Informatics ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 120-138
Author(s):  
V. E. Markevich ◽  
V. V. Legkostup

The possibility of control of a guided supersonic aviation unmanned interceptor on a moving target in an autonomous airborne multi-position radar station has been investigated. To obtain the coordinate information, the algorithm of difference-range finding and difference range-Doppler spatial measurements is selected using a limited number of transmitting positions that do not provide an unambiguous determination of the coordinates and speed of the object with high accuracy. The paper proposes various approaches to eliminate a priori uncertainty regarding the estimated coordinates in a limited set of measuring radio engineering positions.An analytical method is considered for constructing an optimal state control device for a nonlinear multidimensional and multiply connected dynamic object, taking into account the constraints, which allows one to obtain finite computational relations in a closed algebraic form. The control device was synthesized using measurements in the Cartesian and spherical coordinate systems, several varieties of the combined method of pointing a controlled object to an instant meeting point were obtained. The given guidance algorithms are a generalization of the method of proportional navigation widely used in practice and its modifications. A distinctive feature of the synthesized algorithms is the natural accounting for the nonlinear, multidimensional, and multiply connected structure of the control object, as well as the parameters of unsteady perturbations (acceleration of gravity, projections of the longitudinal acceleration of the object and acceleration of the target’s maneuver) that act in the guidance process.The unified kinematic differential equations that describe the dynamics of the control object, are obtained, and they can be used to synthesize a controller that operates according to switched or smoothly matched non-stationary optimality criteria (target functions, target integral manifolds). The developed algorithms can be used in the design of autonomous homing and telecontrol systems, implemented in hardware and software both on board an unmanned aerial or artillery interceptor, and as a part of autonomous multiposition airborne radar stations.


Sign in / Sign up

Export Citation Format

Share Document