scholarly journals The development of PID temperature controllers based on FEM thermal analysis

2021 ◽  
Vol 342 ◽  
pp. 06008
Author(s):  
Tudor George Alexandru ◽  
Cristina Pupaza

Nowadays, most of the electronic components that are deployed in industrial devices represent active heat sources that demand adequate cooling solutions to ensure their safe and reliable operation. Thermal design and the development of temperature controllers represent the two essential branches of the cooling system development process. Both workflows can be tackled with the support of Computer Aided Engineering software. In this regard, the parametric study of coolers based on Finite Element Method thermal analysis is widely discussed throughout the literature. Even so, the use of such simulation tools for further developing temperature controllers is only addressed from theoretical point of views. The present paper represents an approach for implementing PID controllers that are applicable to industrial electronic devices. Tuning of the gains is completed by using the Ziegler-Nichols heuristic method. The proposed approach replaces the physical system with simplified thermal modelling. The given concepts are verified by means of a simple experimental setup.

Author(s):  
Sun Ho Jang ◽  
Moo Whan Shin

In this paper we report the thermal performance of LED head lamp module and the cooling system. The precise fluid field modeling and heat transfer analysis using a CFD (Computational Fluid Dynamics) were performed according to the practical working conditions for the headlamp. The junction temperatures of LEDs were found to decrease by using the air cooling system and thus improved the heat dissipating capability of the LED array. The junction temperature of the LED array was decreased from 70.6 °C to 30.25 °C when the circulating speed of the air increased from 0 km/h to 120 km/h. And the temperature decrease of 2∼4 °C was obtained by using fins. By the thermal analysis, a new thermal design was obtained for the cooling system of LED arrays for the headlamps. Thus the reliability of the headlamp with LED arrays can be improved with a good cooling system.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


2011 ◽  
Vol 105-107 ◽  
pp. 403-407
Author(s):  
Xiao Chun Zhang ◽  
Yuan Qi Cai

Shell stiffeners are used effectively to prevent preferential local buckling of LNG tank shell. In this paper, Finite element method (FEM) is applied to pay attention to the thermal analysis on the shell stiffeners of double steel wall LNG storage tank. The structural requirements according to British Standard 7777-2:1993 has been considered and then some dimensional adjustments of shell stiffeners are made to evaluate their influence on the thermal field of double steel wall LNG storage tank. Temperature distributions and heat flux of different dimensional shell stiffeners are presented. Though the analysis of results, it puts forward the conclusion that the dimensional design of shell stiffeners used in double steel wall LNG storage tank shall take not only the structural design requirements but also the thermal design ones into consideration in order to finally save cost in both construction and normal operation.


2013 ◽  
Vol 33 (1) ◽  
pp. 01-10 ◽  
Author(s):  
Irenilson M. da Silva ◽  
Héliton Pandorfi ◽  
Ângelo J. S. de Vasconcelos ◽  
Renato Laurenti ◽  
Cristiane Guiselini

Due to the importance of the environment on animal production and thus environmental control, the study aims to build a system for monitoring and control the meteorological variables, temperature and relative humidity, low cost, which can be associated with an evaporative cooling system (ECS). The system development included all the stages of assembly, test and laboratory calibration, and later the validation of the equipment carried in the field. The validation step showed results which allowed concluding that the system can be safely used in the monitoring of these variables. The controller was efficient in management of the microclimate in the waiting corral and allowed the maintenance of the air temperature within the comfort range for dairy cattle in pre-milking with averaged 25.09 ºC during the afternoon. The equipment showed the lower cost (R$ 325.76) when compared to other middle market (R$ 450.00).


Author(s):  
João F. Nunes ◽  
Pedro M. Moreira ◽  
João Manuel R. S. Tavares

Computational systems to identify objects represented in image sequences and tracking their motion in a fully automatic manner, enabling a detailed analysis of the involved motion and its simulation are extremely relevant in several fields of our society. In particular, the analysis and simulation of the human motion has a wide spectrum of relevant applications with a manifest social and economic impact. In fact, usage of human motion data is fundamental in a broad number of domains (e.g.: sports, rehabilitation, robotics, surveillance, gesture-based user interfaces, etc.). Consequently, many relevant engineering software applications have been developed with the purpose of analyzing and/or simulating the human motion. This chapter presents a detailed, broad and up to date survey on motion simulation and/or analysis software packages that have been developed either by the scientific community or commercial entities. Moreover, a main contribution of this chapter is an effective framework to classify and compare motion simulation and analysis tools.


2015 ◽  
Vol 809-810 ◽  
pp. 1145-1150 ◽  
Author(s):  
Maja Baier ◽  
Mateusz Dziewior ◽  
Jakub Franiasz ◽  
Michal Zuk

Thermal analysis of a DC motor cooling system and description of measurement system applied to an engine test stand are the main topics of the paper. The motor that is being tested comes from the electric vehicle of Silesian Greenpower project whose aim is to design and build energy efficient bolids in order to participate in international races in Great Britain. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The engine test stand used in this research was designed especially for Silesian Greenpower vehicles. Thanks to its modular construction and versatility, it enables measuring many different parameters of the motor and powertrain. In this paper the thermal analysis is described as well as how the measuring system of the engine stand works. The thermal analysis described in the article occurred to be very helpful in improving the cooling system and motor performance in the same time. The advanced measuring and control system of the test stand enables conducting versatile analysis of the DC motor and the powertrain.


2011 ◽  
Vol 80-81 ◽  
pp. 767-773
Author(s):  
Hai Gang Sun ◽  
Yong Zhou

Thermal design and the working temperature control have been a key factor in the design of electronic devices and system. In this paper, a sort of heat sink collocated with high-power IGBT module, which is commonly used in car-carrying motor control system, is designed based on thermal analysis by means of CFD simulation and computer-aided analyzing, also the influence relations of structure parameters with thermal performance are studied. With thermal control as the overall design objective, structure parameters of heat sink are determined according to the obtained relations. Further, thermal performance of the designed heat sink is simulated and analyzed in CFD software to examine the validity of the design result. In this way, a method of thermal analyzing and structure parameter design for heat sink, which is proved as an efficacious approach, is introduced and can be used to thermal design and analysis for similar products.


Sign in / Sign up

Export Citation Format

Share Document