scholarly journals Distributed AI embedded cluster for real-time video analysis systems with edge computing

2022 ◽  
Vol 355 ◽  
pp. 03036
Author(s):  
Wei Li ◽  
Zhiyuan Han ◽  
Jian Shen ◽  
Dandan Luo ◽  
Bo Gao ◽  
...  

Herein, on the basis of a distributed AI cluster, a real-time video analysis system is proposed for edge computing. With ARM cluster server as the hardware platform, a distributed software platform is constructed. The system is characterized by flexible expansion, flexible deployment, data security, and network bandwidth efficiency, which makes it suited to edge computing scenarios. According to the measurement data, the system is effective in increasing the speed of AI calculation by over 20 times in comparison with the embedded single board and achieving the calculation effect that matches GPU. Therefore, it is considered suited to the application in heavy computing power such as real-time AI computing.

2012 ◽  
Vol 33 (08) ◽  
pp. 635-640 ◽  
Author(s):  
A. Redwood-Brown ◽  
W. Cranton ◽  
C. Sunderland

2020 ◽  
Vol 10 (7) ◽  
pp. 2334
Author(s):  
Jieun Kang ◽  
Svetlana Kim ◽  
Jaeho Kim ◽  
NakMyoung Sung ◽  
YongIk Yoon

With the development of the Internet of Things (IoT), the amount of data is growing and becoming more diverse. There are several problems when transferring data to the cloud, such as limitations on network bandwidth and latency. That has generated considerable interest in the study of edge computing, which processes and analyzes data near the network terminals where data is causing. The edge computing can extract insight data from a large number of data and provide fast essential services through simple analysis. The edge computing has a real-time advantage, but also has disadvantages, such as limited edge node capacity. The edge node for edge computing causes overload and delays in completing the task. In this paper, we proposes an efficient offloading model through collaboration between edge nodes for the prevention of overload and response to potential danger quickly in emergencies. In the proposed offloading model, the functions of edge computing are divided into data-centric and task-centric offloading. The offloading model can reduce the edge node overload based on a centralized, inefficient distribution and trade-off occurring in the edge node. That is the leading cause of edge node overload. So, this paper shows a collaborative offloading model in edge computing that guarantees real-time and prevention overload prevention based on data-centric offloading and task-centric offloading. Also, we present an intelligent offloading model based on several scenarios of forest fire ignition.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


2020 ◽  
Vol 9 (3) ◽  
pp. 25-30
Author(s):  
So Yeon Jeon ◽  
Jong Hwa Park ◽  
Sang Byung Youn ◽  
Young Soo Kim ◽  
Yong Sung Lee ◽  
...  

Author(s):  
Christian Luksch ◽  
Lukas Prost ◽  
Michael Wimmer

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical integration technique based on a triangulation to calculate noise-free diffuse shading. We include a dynamic point in the triangulation that provides a continuous near-field illumination resembling the shape of the light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide an extension for specular reflection on surfaces with arbitrary roughness that facilitates the use of existing real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends the range of possible applications with photometric area lights.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 955
Author(s):  
Zhiyuan Li ◽  
Ershuai Peng

With the development of smart vehicles and various vehicular applications, Vehicular Edge Computing (VEC) paradigm has attracted from academic and industry. Compared with the cloud computing platform, VEC has several new features, such as the higher network bandwidth and the lower transmission delay. Recently, vehicular computation-intensive task offloading has become a new research field for the vehicular edge computing networks. However, dynamic network topology and the bursty computation tasks offloading, which causes to the computation load unbalancing for the VEC networking. To solve this issue, this paper proposed an optimal control-based computing task scheduling algorithm. Then, we introduce software defined networking/OpenFlow framework to build a software-defined vehicular edge networking structure. The proposed algorithm can obtain global optimum results and achieve the load-balancing by the virtue of the global load status information. Besides, the proposed algorithm has strong adaptiveness in dynamic network environments by automatic parameter tuning. Experimental results show that the proposed algorithm can effectively improve the utilization of computation resources and meet the requirements of computation and transmission delay for various vehicular tasks.


Sign in / Sign up

Export Citation Format

Share Document