scholarly journals Experimental investigations and analysis on churning losses of splash lubricated spiral bevel gears

2017 ◽  
Vol 18 (4) ◽  
pp. 412 ◽  
Author(s):  
S. Laruelle ◽  
C. Fossier ◽  
C. Changenet ◽  
F. Ville ◽  
S. Koechlin

Churning losses are a complex phenomenon which generates significant power losses when considering splash lubrication of gear units. However, only few works deal with bevel gears dipped lubrication losses. The objective of this study is to provide a wide variety of experimental tests on churning losses, especially getting interested in geometry of spiral bevel gears influence. A specific test rig was used in order to study a single spiral bevel gear partially immersed in an oil bath. Experiments have been conducted for several operating conditions in terms of speeds, lubricants, temperatures and gear geometries to study their impact on splash lubrication power losses. These experimental results are compared with the predictions from various literature sources. As the results did not agree well with the predictions for all operating conditions, an extended equation derived from previous works is introduced to estimate churning losses of bevel gears.

2014 ◽  
Vol 604 ◽  
pp. 36-40 ◽  
Author(s):  
Remigiusz Michalczewski ◽  
Marek Kalbarczyk ◽  
Waldemar Tuszynski ◽  
Marian Szczerek

One of the main problems with the operation of spiral bevel gears is related to very severe conditions in the contact of the meshing teeth; therefore, lubrication is very difficult, which increases the risk of scuffing occurrence. One of the ways to achieve better scuffing resistance is by the deposition of a low-friction coating on the bevel gears teeth. Gear scuffing tests were performed using a bevel gear test rig designed and manufactured at ITeE-PIB. The authorial bevel gear scuffing test was performed. Specially designed, spiral bevel gears were used for testing. Two material combinations were tested: uncoated pinion - coated wheel and, for reference, both gears without coatings. The a-C:H:W (trade name WC/C) coating of DLC type was deposited on the wheel teeth. A mineral, automotive gear oil of API GL-5 performance level was used for lubrication. It is shown that the resistance to scuffing may be significantly improved when the a-C:H:W coating is deposited on the spiral bevel gear teeth.


Author(s):  
David G. Lewicki ◽  
Ron L. Woods ◽  
Faydor L. Litvin ◽  
Alfonso Fuentes

Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.


Author(s):  
R Quiban ◽  
C Changenet ◽  
Y Marchesse ◽  
F Ville ◽  
J Belmonte

In the present study, no-load losses of different splash lubricated spiral bevel gears were measured. The authors used a specific test rig, and a set of gears, to investigate churning losses at higher tangential speeds: up to 60 m/s. An uncommon behavior of the drag torque was highlighted: the torque increased with the rotational speed until a local maximum was reached; then the torque decreased and a local minimum was noticed; at higher rotational speed the torque increased. The torque decrease seems to be linked with a windage phenomenon, which becomes non-negligible at such speeds. In this work, efforts were made to characterize this reduction of gear immersion depth in order to be able to predict no-load losses. It was found that the evolution of oil immersion was linked to a Froude number. Finally a new analytical model of no-load losses was developed for churning losses combined with windage effects. This formulation takes into account several parameters such as rotational speed, gear immersion depth, oil properties, and gear geometrical parameters.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 173
Author(s):  
Syed Muhammad Tayyab ◽  
Steven Chatterton ◽  
Paolo Pennacchi

Spiral bevel gears are known for their smooth operation and high load carrying capability; therefore, they are an important part of many transmission systems that are designed for high speed and high load applications. Due to high contact ratio and complex vibration signal, their fault detection is really challenging even in the case of serious defects. Therefore, spiral bevel gears have rarely been used as benchmarking for gears’ fault diagnosis. In this research study, Artificial Intelligence (AI) techniques have been used for fault detection and fault severity level identification of spiral bevel gears under different operating conditions. Although AI techniques have gained much success in this field, it is mostly assumed that the operating conditions under which the trained AI model is deployed for fault diagnosis are same compared to those under which the AI model was trained. If they differ, the performance of AI model may degrade significantly. In order to overcome this limitation, in this research study, an effort has been made to find few robust features that show minimal change due to changing operating conditions; however, they are fault discriminating. Artificial neural network (ANN) and K-nearest neighbors (KNN) are used as classifiers and both models are trained and tested by using the selected robust features for fault detection and severity assessment of spiral bevel gears under different operating conditions. A performance comparison between both classifiers is also carried out.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


2012 ◽  
Vol 215-216 ◽  
pp. 1062-1066
Author(s):  
Xiu Hai Wu

The author describes tooth profile formatting mechanism of spherical involute spiral bevel gear based on Principles of Gear conjugate, establishes the mathematical model of spiral bevel gears. The precise spherical involute of spiral bevel gears is generated with parametric modeling idea and th secondary development method based on PROGRAM of PRO/E software. Finally, a complete spherical three-dimensional modeling of the involute spiral bevel gear is established, which provides a method of parametric design and manufacturing of spiral bevel gears.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402093889
Author(s):  
Xia Hua ◽  
Zaigang Chen

The dynamics of spiral bevel gears have gained increasing importance due to concerns relating to noise and durability. This is because the mesh force acting on the gear teeth is amplified under dynamic conditions, potentially reducing the fatigue life of the gears. Furthermore, a sizable dynamic force can be transmitted to the housing, inducing structure-born gear whine. The elasticity of the bearings can influence the dynamics of spiral bevel gears. In this article, the finite element formulation of a spiral bevel geared rotor dynamic system is applied to investigate the influence of bearing elasticity on the dynamics of spiral bevel gears. The designs and configurations of rear axles are modeled and analyzed for real-world applications, to gain an enhanced practical understanding of the effect of bearing stiffness on spiral bevel gear dynamics.


Author(s):  
Yanming Mu ◽  
Zongde Fang

This paper presents a new method to design a seventh-order transmission error for high contact ratio spiral bevel gears by the modified curvature motion method to reach the purpose of reducing or eliminating gear vibration and noise. In this paper, firstly, based on the predesigned seventh-order transmission error, the polynomial coefficients of transmission error curve can be obtained. Secondly, a method named modified curvature motion method is used to generate the spiral bevel gear with the predesigned transmission error. Lastly, based on TCA and LTCA, we verify the feasibility of the modified curvature motion method to generate spiral bevel gear with seventh-order transmission error, and the meshing impact of gear set with the seventh-order and second-order function of transmission error is analyzed and compared. The results of a numerical example show that the seventh-order transmission error acquired by the modified curvature motion method can effectively reduce the meshing impact of spiral bevel gears. The tooth modification method and meshing impact analysis method can serve as a basis for developing a general technique of flank modification for spiral bevel gears.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Undercutting is a serious problem in designing spiral bevel gears with small numbers of teeth. Conditions of undercutting for spiral bevel gears vary with the manufacturing methods. Based on the theory of gearing [1], the tooth geometry of the Gleason type circular-cut spiral bevel gear is mathematically modeled. The sufficient and necessary conditions for the existence and regularity of the generated gear tooth surfaces are investigated. The conditions of undercutting for a circular-cut spiral bevel gear are defined by the sufficient conditions of the regular gear tooth surface. The derived undercutting equations can be applicable for checking the undercutting conditions of spiral bevel gears manufactured by the Gleason Duplex Method, Helical Duplex Method, Fixed Setting Method, and Modified Roll Method. An example is included to illustrate the application of the proposed undercut checking equations.


Sign in / Sign up

Export Citation Format

Share Document