scholarly journals Dynamics of flow in a branching channel

2021 ◽  
Vol 22 ◽  
pp. 25
Author(s):  
Václav Uruba ◽  
Pavel Procházka ◽  
Vladislav Skála

Flow in a branched channel is studied experimentally using the PIV technique. The presented study is concentrated on clarifying the dynamical behaviour in individual branches. The 11 branches issuing from the main channel perpendicularly, all channels are of rectangular cross-section. First, the time-mean flow-field is shown, then the flow dynamics is investigated using the OPD method. Flow patterns and frequencies are evaluated in three selected branches. The separated flow in branches exhibits highly dynamical behaviour, which differs substantially in the branches close to the inflow, in the main channel middle and close to its end. The typical topologies and frequencies of the detected quasi-periodical structures in the channel braches are shown in the study. Mostly, the flow-fields are populated by trains of vortices with alternating orientation and saddle-like structures. The flow-field close to the channel walls affects heat transfer process between the wall and fluid.

2018 ◽  
Vol 168 ◽  
pp. 05001
Author(s):  
Václav Uruba ◽  
Pavel Procházka ◽  
Vladislav Skála

Flow in a branched channel is studied experimentally using the PIV technique. The branches are issuing from the main channel perpendicularly, all channels are of rectangular cross-section. The flow dynamics in one particular branch is investigated using the OPD method.


2001 ◽  
Vol 124 (1) ◽  
pp. 154-165 ◽  
Author(s):  
S. R. Maddah ◽  
H. H. Bruun

This paper presents results obtained from a combined experimental and computational study of the flow field over a multi-element aerofoil with and without an advanced slat. Detailed measurements of the mean flow and turbulent quantities over a multi-element aerofoil model in a wind tunnel have been carried out using stationary and flying hot-wire (FHW) probes. The model configuration which spans the test section 600mm×600mm, is made of three parts: 1) an advanced (heel-less) slat, 2) a NACA 4412 main aerofoil and 3) a NACA 4415 flap. The chord lengths of the elements were 38, 250 and 83 mm, respectively. The results were obtained at a chord Reynolds number of 3×105 and a free Mach number of less than 0.1. The variations in the flow field are explained with reference to three distinct flow field regimes: attached flow, intermittent separated flow, and separated flow. Initial comparative results are presented for the single main aerofoil and the main aerofoil with a nondeflected flap at angles of attacks of 5, 10, and 15 deg. This is followed by the results for the three-element aerofoil with emphasis on the slat performance at angles of attack α=10, 15, 20, and 25 deg. Results are discussed both for a nondeflected flap δf=0deg and a deflected flap δf=25deg. The measurements presented are combined with other related aerofoil measurements to explain the main interaction of the slat/main aerofoil and main aerofoil/flap both for nondeflected and deflected flap conditions. These results are linked to numerically calculated variations in lift and drag coefficients with angle of attack and flap deflection angle.


1989 ◽  
Vol 111 (2) ◽  
pp. 149-153 ◽  
Author(s):  
E. Logan ◽  
P. Phataraphruk

The response of a fully developed pipe flow to wall mounted roughness elements of rectangular cross section was investigated experimentally using a probe with a single hot-wire. Four heights of rectangular, ring-type elements were installed rigidly in a 63.5-mm diameter, smooth-walled, circular pipe in which air was flowing at a Reynolds number of 50,000. After passing over the roughness element, the flow recovery occurred in three stages. The three flow regions are delineated, and the velocity profiles for each are correlated.


Author(s):  
Jürgen R. Lücke ◽  
Heinz E. Gallus

The flow field inside an annular compressor cascade is numerically investigated. The mean flow features are complex three-dimensional zones of turbulent separation at hub and shroud at high inflow angles. The flow field is investigated with an implicit three-dimensional Navier-Stokes code. To predict turbulent effects the flow solver includes two different variants of a Low-Re-number k-ϵ-model and an algebraic Reynolds-stress-model. Using the Low-Re-number model the structure of the regions of separated flow are fairly well predicted. However, intensity and size of these zones are too small compared with the experimental data. Better results are produced using the anisotropic algebraic Reynolds-stress-model combined with a stagnation point modification of the turbulent production term. Stucture and intensity of the vortex systems are simulated in more detail. Static pressure distributions and loss contours are in a very good agreement with the experiments.


2018 ◽  
Vol 70 ◽  
pp. 02007
Author(s):  
Robert Kaniowski ◽  
Robert Pastuszko

The boiling curves and heat transfer coefficients between the heating surface and fluid were investigated in the paper. Copper samples with horizontal microchannels of rectangular cross-section, variable depth and width were the objects of the study. The following geometrical parameters have been used: microchannel width 0.2; 0.3 and 0.4 mm, depth between 0.2 and 0.5 mm (change every 0.1 mm). Boiling refrigerant was Novec-649 (GWP = 1), and the experiment was performed at atmospheric pressure. Geometrical parameters impact, within a given range of heat flux 3 – 130 kW/m2, on the heat transfer process was determined.


Author(s):  
Fethi Aloui ◽  
Amal Elawady

Abstract In this work, we present an experimental and numerical study in a horizontal duct with a rectangular cross-section (300 × 30mm2). In the middle of this cross-section, a rectangular obstacle (20 × 10mm2) then a squared obstacle (10 × 10mm2) were placed in order to study experimentally and numerically the vortex shedding and their interactions in the flow. Upstream obstacles, the studied flows are laminar. In our experimental study, the PIV technique was used in order to obtain instantaneous velocity fields downstream the used obstacles. From these measurement results, a post-processing was used (especially the Γ2 criterion) in order to well extract instantaneous vortices contained in the flow downstream obstacles. In parallel with this experimental study, a 2D numerical simulation was achieved in order to be validated by the experimental results. Other complementary PIV measurements were carried out in the duct top by visualizing the flow downstream obstacles in order to study the 3D effects of the flow.


2018 ◽  
Vol 180 ◽  
pp. 02029
Author(s):  
Renata Gnatowska ◽  
Radka Kellnerová ◽  
Václav Uruba

The flow-field in the vicinity of tandem building model in a wind tunnel will be subjected to analysis of dynamics. The model is 3D consisting of the two blocks of different sizes arranged in a streamwise direction. Experiments were performed using time-resolved PIV technique in several measuring planes to capture both spatial and dynamical features.


Author(s):  
Manousos Valyrakis ◽  
Da Liu ◽  
Umut Turker ◽  
Oral Yagci

Abstract Over the last two decades, the role of vegetation in the environmental and ecological restoration of surface water bodies has received much attention. In this context, the momentum exchange between the flow through the main channel and the riparian zone is a key mechanism. The primary goal of this study is to investigate the role of bank vegetation density on flow dynamics across the whole channel. This experimental study presents the major findings from a series of flow measurements across a channel having a sloping bank with vegetation at varying densities. The experiments are conducted under the same, uniform flow and fixed bed conditions, for a range of six linear and rectilinear arrangements of incremental streambank vegetation densities. A set of ten velocity profiles is obtained across the test cross-section of the channel, including the riverbank, for each vegetation density. These flow measurements are analyzed to derive roughness coefficients, which are related to the bulk flow velocities through the main channel and the riverbank and discuss the redistribution of flow velocities. An approximate doubling for the estimates of time-averaged boundary shear stress at the main channel, is observed for the case of no to dense vegetation, which enable further discussing implications for the stability of bed surface material. It is found that the vegetation arrangement, in addition to vegetation density, can have a strong impact in modifying the mean flow velocity at the main channel, for low riparian densities (φ < 0.6%). Highlights Flow dynamics are measured across the whole channel, including the vegetated riverbank. As stem density increases, mean flow velocity in the main channel increases while mean flow at the riverbank decreases. The arrangement of riparian vegetation can be as important as that of the density, in modifying the mean flow field of the main channel, for low riparian densities. Bed shear stresses at the main channel are estimated to increase with riverbank vegetation, reducing the stability of the stream’s bed surface.


Sign in / Sign up

Export Citation Format

Share Document