scholarly journals Optimal control techniques based on infection age for the study of the COVID-19 epidemic

2020 ◽  
Vol 15 ◽  
pp. 48
Author(s):  
J. Frédéric Bonnans ◽  
Justina Gianatti

We propose a model for the COVID-19 epidemic where the population is partitioned into classes corresponding to ages (that remain constant during the epidemic). The main feature is to take into account the infection age of the infected population. This allows to better simulate the infection propagation that crucially depend on the infection age. We discuss how to estimate the coefficients from data available in the future, and introduce a confinement variable as control. The cost function is a compromise between a confinement term, the hospitalization peak and the death toll. Our numerical experiments allow to evaluate the interest of confinement varying with age classes.

2021 ◽  
Vol 11 (2) ◽  
pp. 850
Author(s):  
Dokkyun Yi ◽  
Sangmin Ji ◽  
Jieun Park

Artificial intelligence (AI) is achieved by optimizing the cost function constructed from learning data. Changing the parameters in the cost function is an AI learning process (or AI learning for convenience). If AI learning is well performed, then the value of the cost function is the global minimum. In order to obtain the well-learned AI learning, the parameter should be no change in the value of the cost function at the global minimum. One useful optimization method is the momentum method; however, the momentum method has difficulty stopping the parameter when the value of the cost function satisfies the global minimum (non-stop problem). The proposed method is based on the momentum method. In order to solve the non-stop problem of the momentum method, we use the value of the cost function to our method. Therefore, as the learning method processes, the mechanism in our method reduces the amount of change in the parameter by the effect of the value of the cost function. We verified the method through proof of convergence and numerical experiments with existing methods to ensure that the learning works well.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 214
Author(s):  
Paolo Di Giamberardino ◽  
Daniela Iacoviello

The paper addresses the problem of human virus spread reduction when the resources for the control actions are somehow limited. This kind of problem can be successfully solved in the framework of the optimal control theory, where the best solution, which minimizes a cost function while satisfying input constraints, can be provided. The problem is formulated in this contest for the case of the HIV/AIDS virus, making use of a model that considers two classes of susceptible subjects, the wise people and the people with incautious behaviours, and three classes of infected, the ones still not aware of their status, the pre-AIDS patients and the AIDS ones; the control actions are represented by an information campaign, to reduce the category of subjects with unwise behaviour, a test campaign, to reduce the number of subjects not aware of having the virus, and the medication on patients with a positive diagnosis. The cost function considered aims at reducing patients with positive diagnosis using as less resources as possible. Four different types of resources bounds are considered, divided into two classes: limitations on the instantaneous control and fixed total budgets. The optimal solutions are numerically computed, and the results of simulations performed are illustrated and compared to put in evidence the different behaviours of the control actions.


Author(s):  
Kaivan Kamali ◽  
Lijun Jiang ◽  
John Yen ◽  
K. W. Wang

In traditional optimal control and design problems, the control gains and design parameters are usually derived to minimize a cost function reflecting the system performance and control effort. One major challenge of such approaches is the selection of weighting matrices in the cost function, which are usually determined via trial and error and human intuition. While various techniques have been proposed to automate the weight selection process, they either can not address complex design problems or suffer from slow convergence rate and high computational costs. We propose a layered approach based on Q-learning, a reinforcement learning technique, on top of genetic algorithms (GA) to determine the best weightings for optimal control and design problems. The layered approach allows for reuse of knowledge. Knowledge obtained via Q-learning in a design problem can be used to speed up the convergence rate of a similar design problem. Moreover, the layered approach allows for solving optimizations that cannot be solved by GA alone. To test the proposed method, we perform numerical experiments on a sample active-passive hybrid vibration control problem, namely adaptive structures with active-passive hybrid piezoelectric networks (APPN). These numerical experiments show that the proposed Q-learning scheme is a promising approach for.


2009 ◽  
Vol 06 (03) ◽  
pp. 459-479
Author(s):  
SUMITRA GANESH ◽  
RUZENA BAJCSY

We propose a unified approach for recognition and learning of human actions, based on an optimal control model of human motion. In this model, the goals and preferences of the agent engaged in a particular action are encapsulated as a cost function or performance criterion, that is optimized to yield the details of the movement. The cost function is a compact, intuitive and flexible representation of the action. A parameterized form of the cost function is considered, wherein the structure reflects the goals of the actions, and the parameters determine the relative weighting of different terms. We show how the cost function parameters can be estimated from data by solving a nonlinear least squares problem. The parameter estimation method is tested on motion capture data for two different reaching actions and six different subjects. We show that the problem of action recognition in the context of this representation is similar to that of mode estimation in a hybrid system and can be solved using a particle filter if a receding horizon formulation of the optimal controller is adopted. We use the proposed approach to recognize different reaching actions from the 3D hand trajectory of subjects.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 660 ◽  
Author(s):  
Jieun Park ◽  
Dokkyun Yi ◽  
Sangmin Ji

The process of machine learning is to find parameters that minimize the cost function constructed by learning the data. This is called optimization and the parameters at that time are called the optimal parameters in neural networks. In the process of finding the optimization, there were attempts to solve the symmetric optimization or initialize the parameters symmetrically. Furthermore, in order to obtain the optimal parameters, the existing methods have used methods in which the learning rate is decreased over the iteration time or is changed according to a certain ratio. These methods are a monotonically decreasing method at a constant rate according to the iteration time. Our idea is to make the learning rate changeable unlike the monotonically decreasing method. We introduce a method to find the optimal parameters which adaptively changes the learning rate according to the value of the cost function. Therefore, when the cost function is optimized, the learning is complete and the optimal parameters are obtained. This paper proves that the method ensures convergence to the optimal parameters. This means that our method achieves a minimum of the cost function (or effective learning). Numerical experiments demonstrate that learning is good effective when using the proposed learning rate schedule in various situations.


2017 ◽  
Vol 36 (13-14) ◽  
pp. 1474-1488 ◽  
Author(s):  
Peter Englert ◽  
Ngo Anh Vien ◽  
Marc Toussaint

Inverse optimal control (IOC) assumes that demonstrations are the solution to an optimal control problem with unknown underlying costs, and extracts parameters of these underlying costs. We propose the framework of inverse Karush–Kuhn–Tucker (KKT), which assumes that the demonstrations fulfill the KKT conditions of an unknown underlying constrained optimization problem, and extracts parameters of this underlying problem. Using this we can exploit the latter to extract the relevant task spaces and parameters of a cost function for skills that involve contacts. For a typical linear parameterization of cost functions this reduces to a quadratic program, ensuring guaranteed and very efficient convergence, but we can deal also with arbitrary non-linear parameterizations of cost functions. We also present a non-parametric variant of inverse KKT that represents the cost function as a functional in reproducing kernel Hilbert spaces. The aim of our approach is to push learning from demonstration to more complex manipulation scenarios that include the interaction with objects and therefore the realization of contacts/constraints within the motion. We demonstrate the approach on manipulation tasks such as sliding a box, closing a drawer and opening a door.


2007 ◽  
Vol 7 (4) ◽  
pp. 302-308 ◽  
Author(s):  
Kaivan Kamali ◽  
L. J. Jiang ◽  
John Yen ◽  
K. W. Wang

In traditional optimal control and design problems, the control gains and design parameters are usually derived to minimize a cost function reflecting the system performance and control effort. One major challenge of such approaches is the selection of weighting matrices in the cost function, which are usually determined via trial-and-error and human intuition. While various techniques have been proposed to automate the weight selection process, they either can not address complex design problems or suffer from slow convergence rate and high computational costs. We propose a layered approach based on Q-learning, a reinforcement learning technique, on top of genetic algorithms (GA) to determine the best weightings for optimal control and design problems. The layered approach allows for reuse of knowledge. Knowledge obtained via Q-learning in a design problem can be used to speed up the convergence rate of a similar design problem. Moreover, the layered approach allows for solving optimizations that cannot be solved by GA alone. To test the proposed method, we perform numerical experiments on a sample active-passive hybrid vibration control problem, namely adaptive structures with active-passive hybrid piezoelectric networks. These numerical experiments show that the proposed Q-learning scheme is a promising approach for automation of weight selection for complex design problems.


2021 ◽  
Author(s):  
Germain Faity ◽  
Denis Mottet ◽  
Simon Pla ◽  
Jérôme Froger

AbstractHumans coordinate biomechanical degrees of freedom to perform tasks at minimum cost. When reaching a target from a seated position, the trunk-arm-forearm coordination moves the hand to the well-defined spatial goal, while typically minimising hand jerk and trunk motion. However, due to fatigue or stroke, people visibly move the trunk more, and it is unclear what cost can account for this. Here we show that people recruit their trunk when the torque at the shoulder is too close to the maximum. We asked 26 healthy participants to reach a target while seated and we found that the trunk contribution to hand displacement increases from 11% to 27% when an additional load is handled. By flexing and rotating the trunk, participants spontaneously increase the reserve of anti-gravitational torque at the shoulder from 25% to 40% of maximal voluntary torque. Our findings provide hints on how to include the reserve of torque in the cost function of optimal control models of human coordination in healthy fatigued persons or in stroke victims.


Sign in / Sign up

Export Citation Format

Share Document