scholarly journals EUHFORIA: European heliospheric forecasting information asset

2018 ◽  
Vol 8 ◽  
pp. A35 ◽  
Author(s):  
Jens Pomoell ◽  
S. Poedts

The implementation and first results of the new space weather forecasting-targeted inner heliosphere model “European heliospheric forecasting information asset” (EUHFORIA) are presented. EUHFORIA consists of two major components: a coronal model and a heliosphere model including coronal mass ejections. The coronal model provides data-driven solar wind plasma parameters at 0.1 AU by constructing a magnetic field model of the coronal large-scale magnetic field and employing empirical relations to determine the plasma state such as the solar wind speed and mass density. These are then used as boundary conditions to drive a three-dimensional time-dependent magnetohydrodynamics model of the inner heliosphere up to 2 AU. CMEs are injected into the ambient solar wind modeled using the cone model, with their parameters obtained from fits to imaging observations. In addition to detailing the modeling methodology, an initial validation run is presented. The results feature a highly dynamic heliosphere that the model is able to capture in good agreement with in situ observations. Finally, future horizons for the model are outlined.

2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2020 ◽  
Author(s):  
Karine Issautier ◽  
Mingzhe Liu ◽  
Michel Moncuquet ◽  
Nicole Meyer-Vernet ◽  
Milan Maksimovic ◽  
...  

<p>We present in situ properties of electron density and temperature in the inner heliosphere obtained during the three first solar encounters at 35 solar radii of the Parker Solar Probe mission. These preliminary results, recently shown by Moncuquet et al., ApJS, 2020, are obtained from the analysis of the plasma quasi-thermal noise (QTN) spectrum measured by the radio RFS/FIELDS instrument along the trajectories extending between 0.5 and 0.17 UA from the Sun, revealing different states of the emerging solar wind, five months apart. The temperature of the weakly collisional core population varies radially with a power law index of about -0.8, much slower than adiabatic, whereas the temperature of the supra-thermal population exhibits a much flatter radial variation, as expected from its nearly collisionless state. These measured temperatures are close to extrapolations towards the Sun of Helios measurements.</p><p>We also present a statistical study from these in situ electron solar wind parameters, deduced by QTN spectroscopy, and compare the data to other onboard measurements. In addition, we focus on the large-scale solar wind properties. In particular, from the invariance of the energy flux, a direct relation between the solar wind speed and its density can be deduced, as we have already obtained based on Wind continuous in situ measurements (Le Chat et al., Solar Phys., 2012). We study this anti-correlation during the three first solar encounters of PSP.</p>


2020 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránkova ◽  
Zdeněk Němeček ◽  
Lubomír Přech ◽  
Tereza Ďurovcová

<p>The solar wind variations during particular solar cycles have been described in many previous studies including the solar cycle 23 that was characterized by a long, deep, and very complex solar minimum with very low values of many solar wind parameters.</p><p>Using statistical methods, we analyzed 25 years of Wind spacecraft measurements with motivation to reveal differences and similarities in magnetic field components and solar wind plasma parameters in individual solar cycles. We tracked the changes of the solar magnetic field strength, and components, solar wind speed, density, dynamic pressure, temperature, and composition). Except quiet solar wind conditions during solar minima and maxima, we also selected significant discontinuities (ICME and CIRs) and investigated their influence on profiles of average parameters. For this, we followed other quantities connected with their presence as their average front normals, regions of transitions between high and slow wind streams, special interplanetary magnetic field orientations, etc.). We discuss a behavior of investigated parameters over solar cycles as well as on shorter time scales (in the order of days and hours).</p>


2021 ◽  
Author(s):  
Theophile Caby ◽  
Tommaso Alberti ◽  
Davide Faranda ◽  
Reik V. Donner ◽  
Giuseppe Consolini ◽  
...  

<p>The solar wind is characterized by a multiscale dynamics showing features of chaos, turbulence, intermittency, and recurring large-scale patterns, pointing towards the existence of an underlying attractor. However, magnetic field and plasma parameters usually show different scaling regimes with different physical and dynamical properties. Here by using a recent and novel approach developed in the framework of dynamical systems<span>  </span>we investigate the multiscale instantaneous properties of solar wind magnetic field phase space by means of the evaluation of instantaneous dimension and stability. We show the existence of a break in the average attractor dimension occurring at the observed scaling break between the inertial and the dissipative regimes. We further show that sometimes the dynamics is higher dimensional (d>3) suggesting that the phase space is larger than that described by the system variables and invoking for an external forcing mechanism, together with the existence of at least one unstable fixed point that cannot be definitely associated with noise. Instantaneous properties of the attractor therefore provide an efficient way of evaluating dynamical properties and building up improved cascade models.</p>


2021 ◽  
Author(s):  
Erika Palmerio ◽  
Christina Lee ◽  
Dusan Odstrcil ◽  
Leila Mays

<p>The evolution of coronal mass ejections (CMEs) as they travel away from the Sun is one of the major issues in heliophysics and space weather. During propagation, CMEs and the structures ahead of them (i.e., interplanetary shocks and sheath regions, if present) are significantly affected by the ambient solar wind, which is able to alter their speed, trajectory, and orientation. The scarcity of multi-spacecraft measurements of the same CME, however, implies that little is known about how and where (in terms of distance from the Sun) these various processes exactly come into play.</p><p>To address this issue, we run a series of 3D magnetohydrodynamic simulations using the coupled solar–heliospheric WSA–Enlil model, in which we launch idealised CMEs as hydrodynamic (non-magnetised) structures. This allows us to focus on the evolution of CME-driven shocks and sheath regions through a multi-point study. We launch CMEs of various speeds through different solar wind backgrounds and at different heliolongitudes with respect to the streamer belt position. Then, we investigate the resulting magnetic field and plasma parameters at a series of synthetic spacecraft placed at various longitudes around the CME apex and at various heliocentric distances between 0.5 AU and 2 AU. We also analyse how the magnetic connectivity at these spacecraft evolves as the CME propagates. This work represents a comprehensive study of the interaction of CME-driven shocks and sheath regions with the large-scale solar wind structure throughout the inner heliosphere, with the aim to establish a range of expected behaviours and outcomes useful to interpret real events.</p>


2017 ◽  
Vol 8 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Neil R. Sheeley Jr.

Abstract. A correlation between solar wind speed at Earth and the amount of magnetic field line expansion in the corona was verified in 1989 using 22 years of solar and interplanetary observations. We trace the evolution of this relationship from its birth 15 years earlier in the Skylab era to its current use as a space weather forecasting technique. This paper is the transcript of an invited talk at the joint session of the Historical Astronomy Division and the Solar Physics Division of the American Astronomical Society during its 224th meeting in Boston, MA, on 3 June 2014.


2008 ◽  
Vol 4 (S257) ◽  
pp. 287-290 ◽  
Author(s):  
Alejandro Lara ◽  
Andrea I. Borgazzi

AbstractCoronal mass ejections (CMEs) are large scale structures of plasma (~1016g) and magnetic field expelled from the solar corona to the interplanetary medium. During their travel in the inner heliosphere, these “interplanetary CMEs” (ICMEs), suffer acceleration due to the interaction with the ambient solar wind. Based on hydrodynamic theory, we have developed an analytical model for the ICME transport which reproduce well the observed deceleration of fast ICMEs. In this work we present the results of the model and its application to the CME observed on May 13, 2005 and the associated interplanetary type II burst.


2017 ◽  
Vol 3 (2) ◽  
pp. 20-24 ◽  
Author(s):  
Петр Гололобов ◽  
Peter Gololobov ◽  
Прокопий Кривошапкин ◽  
Prokopy Krivoshapkin ◽  
Гермоген Крымский ◽  
...  

The observable anisotropy of cosmic rays has first been decomposed into zonal harmonics and components of vector and tensor anisotropy. We examine Forbush decreases in cosmic rays that occurred in November 2001 and November 2004. It is shown that at the beginning of a Forbush decrease an antisunward convective current of cosmic rays predominates; and during the recovery phase, a sunward diffusive current of particles along the interplanetary magnetic field dominates. During the phase of intensity drop, short-time decreases in the second zonal harmonic take place. These decreases occur with abrupt changes of the interplanetary magnetic field intensity and solar wind speed. During the passage of large-scale solar wind disturbances, the tensor anisotropy behaves in a complicated way. To explain its behavior, a further detailed investigation is required.


2017 ◽  
Vol 3 (2) ◽  
pp. 22-26
Author(s):  
Петр Гололобов ◽  
Peter Gololobov ◽  
Прокопий Кривошапкин ◽  
Prokopy Krivoshapkin ◽  
Гермоген Крымский ◽  
...  

The observable anisotropy of cosmic rays has first been decomposed into zonal harmonics and components of vector and tensor anisotropy. We examine Forbush decreases in cosmic rays that occurred in November 2001 and November 2004. It is shown that at the beginning of a Forbush decrease an antisunward convective current of cosmic rays predominates; and during the recovery phase, a sunward diffusive current of particles along the interplanetary magnetic field dominates. During the phase of intensity drop, short-time decreases in the second zonal harmonic take place. These decreases occur with abrupt changes of the interplanetary magnetic field intensity and solar wind speed. During the passage of large-scale solar wind disturbances, the tensor anisotropy behaves in a complicated way. To explain its behavior, a further detailed investigation is required.


2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


Sign in / Sign up

Export Citation Format

Share Document