scholarly journals Two-dipole model of the asymmetric Sun

2020 ◽  
Vol 10 ◽  
pp. 40
Author(s):  
Bertalan Zieger ◽  
Kalevi Mursula

The large-scale photospheric magnetic field is commonly thought to be mainly dipolar during sunspot minima, when magnetic fields of opposite polarity cover the solar poles. However, recent studies show that the octupole harmonics contribute comparably to the spatial power of the photospheric field at these times. Also, the even harmonics are non-zero, indicating that the Sun is hemispherically asymmetric with systematically stronger fields in the south during solar minima. We present here an analytical model of two eccentric axial dipoles of different strength, which is physically motivated by the dipole moments produced by decaying active regions. With only four parameters, this model closely reproduces the observed large-scale photospheric field and all significant coefficients of its spherical harmonics expansion, including the even harmonics responsible for the solar hemispheric asymmetry. This two-dipole model of the photospheric magnetic field also explains the southward shift of the heliospheric current sheet observed during recent solar minima.

2019 ◽  
Vol 627 ◽  
pp. A11
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
L. Bertello ◽  
A. Yeates ◽  
...  

Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field.


2020 ◽  
Author(s):  
Iiro Virtanen ◽  
Ilpo Virtanen ◽  
Alexei Pevtsov ◽  
Kalevi Mursula

<p>The axial dipole moments of emerging active regions control the evolution of the axial dipole moment of the whole photospheric magnetic field and the strength of polar fields. Hale's and Joy's laws of polarity and tilt orientation affect the sign of the axial dipole moment of an active region, determining the normal sign for each solar cycle. If both laws are valid (or both violated), the sign of the axial moment is normal. However, for some active regions, only one of the two laws is violated, and the signs of these axial dipole moments are the opposite of normal. The opposite-sign axial dipole moments can potentially have a significant effect on the evolution of the photospheric magnetic field, including the polar fields.</p><p>We determine the axial dipole moments of active regions identified from magnetographic observations and study how the axial dipole moments of normal and opposite signs are distributed in time and latitude in solar cycles 21-24.We use active regions identified from the synoptic maps of the photospheric magnetic field measured at the National Solar Observatory (NSO) Kitt Peak (KP) observatory, the Synoptic Optical Long term Investigations of the Sun (SOLIS) vector spectromagnetograph (VSM), and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO).</p><p>We find that, typically, some 30% of active regions have opposite-sign axial dipole moments in every cycle, often making more than 20% of the total axial dipole moment. Most opposite-signed moments are small, but occasional large moments, which can affect the evolution of polar fields on their own, are observed. Active regions with such a large opposite-sign moment may include only a moderate amount of total magnetic flux. We find that in cycles 21-23 the northern hemisphere activates first and shows emergence of magnetic flux over a wider latitude range, while the southern hemisphere activates later, and emergence is concentrated to lower latitudes. We also note that cycle 24 differs from cycles 21-23 in many ways. Cycle 24 is the only cycle where the northern butterfly wing includes more active regions than the southern wing, and where axial dipole moment of normal sign emerges on average later than opposite-signed axial dipole moment. The total axial dipole moment and even the average axial moment of active regions is smaller in cycle 24 than in previous cycles.</p>


2019 ◽  
Vol 632 ◽  
pp. A39 ◽  
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
K. Mursula

Context. The axial dipole moments of emerging active regions control the evolution of the axial dipole moment of the whole photospheric magnetic field and the strength of polar fields. Hale’s and Joy’s laws of polarity and tilt orientation affect the sign of the axial dipole moment of an active region. If both laws are valid (or both violated), the sign of the axial moment is normal. However, for some active regions, only one of the two laws is violated, and the signs of these axial dipole moments are the opposite of normal. Those opposite-sign active regions can have a significant effect, for example, on the development of polar fields. Aims. Our aim is to determine the axial dipole moments of active regions identified from magnetographic observations and study how the axial dipole moments of normal and opposite signs are distributed in time and latitude in solar cycles 21−24. Methods. We identified active regions in the synoptic maps of the photospheric magnetic field measured at the National Solar Observatory (NSO) Kitt Peak (KP) observatory, the Synoptic Optical Long term Investigations of the Sun (SOLIS) vector spectromagnetograph (VSM), and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), and determined their axial dipole moments. Results. We find that, typically, some 30% of active regions have opposite-sign axial moments in every cycle, often making more than 20% of the total axial dipole moment. Most opposite-signed moments are small, but occasional large moments, which can affect the evolution of polar fields on their own, are observed. Active regions with such a large opposite-sign moment may include only a moderate amount of total magnetic flux. We find that in cycles 21−23 the northern hemisphere activates first and shows emergence of magnetic flux over a wider latitude range, while the southern hemisphere activates later, and emergence is concentrated to lower latitudes. Cycle 24 differs from cycles 21−23 in many ways. Cycle 24 is the only cycle where the northern butterfly wing includes more active regions than the southern wing, and where axial dipole moment of normal sign emerges on average later than opposite-signed axial dipole moment. The total axial dipole moment and even the average axial moment of active regions is smaller in cycle 24 than in previous cycles.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


1993 ◽  
Vol 141 ◽  
pp. 299-301
Author(s):  
Wei Li ◽  
Guoxiang Ai ◽  
Hongqi Zhang ◽  
Jimin Chen

AbstractThe reversed polarity structures of chromospheric magnetic fields are magnetic gulfs and islands of opposite polarity relative to the underlying photospheric fields. In this paper data were analyzed from the Solar Magnetic Field Telescope of the Huairou Solar Observing Station (HSOS) in Beijing. From more than 300 pairs of photospheric magnetograms (in FeI λ5324.19 Å) and relevant chromospheric magnetograms (in Hβλ4861.34 Å), the reality of the reversed polarity structures is demonstrated. According to an analysis of the fine structures of the magnetic fields in the two layers of active regions, we found that there are probably four different types.


1971 ◽  
Vol 43 ◽  
pp. 744-753 ◽  
Author(s):  
John M. Wilcox

The solar sector structure consists of a boundary in the north-south direction such that on one side of the boundary the large-scale weak photospheric magnetic field is predominantly directed out of the Sun, and on the other side of the boundary this field is directed into the Sun. The region westward of a solar sector boundary tends to be unusually quiet and the region eastward of a solar sector boundary tends to be unusually active. This tendency is discussed in terms of flares, coronal enhancements, plage structure and geomagnetic response.


2004 ◽  
Vol 52 (10) ◽  
pp. 937-943 ◽  
Author(s):  
Luca Sorriso-Valvo ◽  
Vincenzo Carbone ◽  
Pierluigi Veltri ◽  
Valentina I. Abramenko ◽  
Alain Noullez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document