BZW1 Facilitates Glycolysis and Promotes Tumor Growth in Pancreatic Ductal Adenocarcinoma Through Potentiating eIF2α Phosphorylation

Author(s):  
Zengxun Li ◽  
Yi Ge ◽  
Jie Dong ◽  
Hongwei Wang ◽  
Tiansuo Zhao ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Yuqiong Wang ◽  
Dan Wang ◽  
Yanmiao Dai ◽  
Xiangyu Kong ◽  
Xian Zhu ◽  
...  

It has been shown that aberrant activation of the Hedgehog (Hh) and nuclear factor-kappa B (NF-κB) signaling pathways plays an important role in the pancreatic carcinogenesis, and KRAS mutation is a hallmark of pancreatic ductal adenocarcinoma (PDAC). Until now, the role of KRAS mutation in the context of crosstalk between Hh and NF-κB signaling pathways in PDAC has not been investigated. This study was to determine whether the crosstalk between the Hh and NF-κB pathways is dependent on KRAS mutation in PDAC. The correlation between Gli1, Shh, NF-κB p65 expression and KRAS mutation in PDAC tissues was firstly examined by immunohistochemistry. Next, Western blotting, qPCR, and immunofluorescence were conducted to examine the biological effects of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α) as NF-κB signaling agonists, Shh as an Hh ligand alone or in combination with KRAS small interfering RNA (si-KRAS) in KRAS-mutant PDAC cells (MT-KRAS; SW1990 and Panc-1), wild-type KRAS PDAC cells (WT-KRAS; BxPC-3) and mutant KRAS knock-in BxPC-3 cells in vitro as well as tumor growth in vivo. KRAS mutation-dependent crosstalk between Hh and NF-κB in PDAC cells was further assessed by Ras activity and luciferase reporter assays. The aberrant Hh and NF-κB pathway activation was found in PDAC tissues with KRAS mutation. The same findings were confirmed in MT-KRAS PDAC cells and MT-KRAS knock-in BxPC-3 cells, whereas this activation was not observed in WT-KRAS PDAC cells. However, the activation was significantly down-regulated by KRAS silencing in MT-KRAS PDAC cells. Furthermore, MT-KRAS cancer cell proliferation and survival in vitro and tumor growth after inoculation with MT-KRAS cells in vivo were promoted by NF-κB and Hh signaling activation. The pivotal factor for co-activation of NF-κB and Hh signaling is MT-KRAS protein upregulation, showing that positive crosstalk between Hh and NF-κB pathways is dependent upon KRAS mutation in PDAC.


2014 ◽  
Author(s):  
Patrick L. Garcia ◽  
Tracy Gamblin ◽  
Leona N. Council ◽  
John D. Christein ◽  
J. Pablo Arnoletti ◽  
...  

2016 ◽  
Vol 24 (6) ◽  
pp. 1106-1116 ◽  
Author(s):  
Sorah Yoon ◽  
Kai-Wen Huang ◽  
Vikash Reebye ◽  
Paul Mintz ◽  
Yu-Wen Tien ◽  
...  

Pancreatology ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. S19 ◽  
Author(s):  
Jeroni Luna ◽  
Xavier Bofill-De Ros ◽  
Chiara Di Vona ◽  
Meritxell Gironella ◽  
Miriam Cuatrecasas ◽  
...  

2017 ◽  
Vol 408 ◽  
pp. 144-154 ◽  
Author(s):  
Jing-Jing Zhang ◽  
Yi Zhu ◽  
Xiong-Fei Zhang ◽  
Dong-Fang Liu ◽  
Yan Wang ◽  
...  

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 91
Author(s):  
Kee Voon Chua ◽  
Chi-Shuan Fan ◽  
Chia-Chi Chen ◽  
Li-Li Chen ◽  
Shu-Chen Hsieh ◽  
...  

Octyl gallate (OG) is a common antioxidant and preservative safely used in food additive and cosmetics. In this study, OG exhibited an activity to induce apoptosis in pancreatic ductal adenocarcinoma (PDAC) cells. It induced BNIP3L level and facilitated physical associations of BNIP3L with Bcl-2 as well as Bcl-XL to set the mitochondrial Bax/Bak channels free for cytochrome c release. In addition, in vivo evaluation also showed that daily oral administration of OG was efficacious to prevent the tumor growth of PDAC cell grafts. Considering PDAC is a desmoplastic tumor consisting of many cancer-associated fibroblasts (CAFs), we further evaluated the efficacy of OG in a CAFs-involved PDAC mouse model. Endothelial-to-mesenchymal transition (EndoMT) is an important source of CAFs. The mix of EndoMT-derived CAFs with PDAC cell grafts significantly recruited myeloid-derived macrophages but prevented immune T cells. HSP90α secreted by EndoMT-derived CAFs further induced macrophage M2-polarization and more HSP90α secretion to expedite PDAC tumor growth. OG exhibited its potent efficacy against the tumor growth, M2-macrophages, and serum HSP90α level in the EndoMT-involved PDAC mouse model. CD91 and TLR4 are cell-surface receptors for extracellular HSP90α (eHSP90α). OG blocked eHSP90α–TLR4 ligation and, thus, prevented eHSP90α-induced M2-macrophages and more HSP90α secretion from macrophages and PDAC cells.


Sign in / Sign up

Export Citation Format

Share Document