Moderate-intensity Exercise Training in Sole and Simultaneous Forms with Insulin Ameliorates the Experimental Type 1 Diabetes-induced Intrinsic Apoptosis in Testicular Tissue

2019 ◽  
Vol 40 (14) ◽  
pp. 909-920 ◽  
Author(s):  
Zahra Samadian ◽  
Javad Tolouei Azar ◽  
Sana Moshari ◽  
Mazdak Razi ◽  
Asghar Tofighi

AbstractThe aim of this study was to investigate the ameliorative effect of moderate-intensity exercise training in sole and simultaneous forms with insulin on experimental type 1 diabetes (T1D)-induced apoptosis. A total of 36 mature male Wistar rats were divided into six equally sized groups, including sedentary control (Con), moderate-intensity exercise training (E-sole), sedentary T1D-induced (D-sole), moderate-exercise-trained T1D-induced (DE), insulin-treated sedentary T1D-induced (DI) and exercise-trained, and insulin-treated T1D-induced (DEI) groups. The 6-week exercise training intervention was involved 30 min of moderate-intensity running on a treadmill once daily (5 days/week). Next, tubular differentiation (TDI) and spermiogenesis (SPI) indices were assessed. The Bcl-2, Bax and caspase-3 expressions were determined using RT-PCR, immunohistochemistry and western blot techniques. Finally, the TUNEL staining was used to analyze the apoptosis ratio. The moderate-intensity exercise training in the sole and when simultaneously considered with insulin (DEI) maintained testicular cellularity, up-regulated Bcl-2 expression, reduced Bax expression and ameliorated the diabetes-induced apoptosis. We failed to show remarkable alterations in caspase-3 mRNA and protein levels in the DE group versus D-sole animals. In conclusion, the moderate-intensity exercise training is able to potentially protect testicular cells from T1D-induced intrinsic apoptosis via up-regulating Bcl-2 and downregulating Bax expressions. Moreover, it amplifies the insulin-induced anti-apoptotic impacts.

2020 ◽  
Vol 98 (11) ◽  
pp. 777-784
Author(s):  
Hao-Xi Zhao ◽  
Zhigang Zhang ◽  
Hui-Ling Zhou ◽  
Fang Hu ◽  
Yongsheng Yu

Our study was to test the effects of aerobic exercise on myocardial function in mice with type 1 diabetes and investigate the underlying mechanism associated with mammalian sterile 20-like kinase 1 (Mst1). Wild-type mice and Mst1(−/−) mice were injected with streptozotocin to induce diabetes and given moderate-intensity exercise for 12 weeks. Phosphorylation of Mst1 was significantly enhanced in the left ventricles of diabetic mice, which was reversed by exercise training. Exercise training or Mst1 deficiency improved myocardial function and reduced myocardial fibrosis in diabetic mice. Exercise training or Mst1 deficiency reduced TUNEL-positive cells and caspase-3 activity in the myocardium of diabetic mice. Exercise training or Mst1 deficiency abated oxidative stress and reduced mitochondrial reactive oxygen species formation, attenuated mitochondrial swelling, and enhanced mitochondrial adenosine triphosphate formation and mitochondrial membrane potential in the myocardium of diabetic mice. Exercise training or Mst1 deficiency suppressed inflammation in the myocardium of diabetic mice. Furthermore, exercise training did not provide further protection in Mst1 knockout mice in diabetes. In conclusion, chronic exercise training attenuated myocardial dysfunction in mice with type 1 diabetes, at least in part, through suppressing Mst1 activation.


2015 ◽  
Vol 32 (3) ◽  
pp. 99-102 ◽  
Author(s):  
Jacqui Charlton ◽  
Lynn Kilbride ◽  
Rory MacLean ◽  
Mark G Darlison ◽  
John McKnight

2020 ◽  
Vol 11 ◽  
pp. 204201882092532 ◽  
Author(s):  
Aleksandra Żebrowska ◽  
Marcin Sikora ◽  
Anna Konarska ◽  
Anna Zwierzchowska ◽  
Tomasz Kamiński ◽  
...  

Aim: This study aimed to determine the effect of moderate intensity continuous exercise (Ex) and hypoxia (Hyp) on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3), irisin and cytokines levels in patients with type 1 diabetes (T1D). Methods: A total of 14 individuals with T1D (age: 28.7 ± 7.3 years) and 14 healthy adults (age: 27.1 ± 3.9 years) performed 40-min continuous Ex at moderate intensity (50% lactate threshold) on a cycle ergometer in normoxia (Nor) and Hyp (FiO2 = 15.1%) Biochemical factors, glucose concentrations and physiological variables were measured at rest, immediately and up to 24 h after both Ex protocols. Results: Patients with T1D had significantly lower pre-Ex serum concentrations of BDNF ( p < 0.05, p < 0.01), and total IGF-1 ( p < 0.001, p < 0.05) and significantly higher irisin levels ( p < 0.05, p < 0.01) in Nor and Hyp, compared with healthy subjects. Ex significantly increased in T1D group serum BDNF (in Nor only p < 0.05) and total IGF-1 levels in Nor and Hyp ( p < 0.001 and p < 0.01, respectively). Immediately after Ex in Hyp, freeIGF-1 ( p < 0.05) and irisin levels ( p < 0.001) were significantly higher compared with the levels induced by Ex alone. Free IGF-1 and irisin serum levels remained elevated in 24 h post-Ex in Hyp. In T1D, significant blood glucose (BG) decrease was observed immediately after Ex in Hyp ( p < 0.001) and in 24 h recovery ( p < 0.001) compared with pre-Ex level. Conclusion: The study results suggest that moderate intensity continuous Ex has beneficial effect on BDNF and IGF-1 levels. Ex in hypoxic conditions may be more effective in increasing availability of IGF-1. The alterations in the post-Ex irisin levels and IGF-1 system may be contributing to more effective glycaemia control in patients with T1D.


2012 ◽  
Vol 97 (11) ◽  
pp. 4193-4200 ◽  
Author(s):  
A. J. Fahey ◽  
N. Paramalingam ◽  
R. J. Davey ◽  
E. A. Davis ◽  
T. W. Jones ◽  
...  

Context: Recently we showed that a 10-sec maximal sprint effort performed before or after moderate intensity exercise can prevent early hypoglycemia during recovery in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms underlying this protective effect of sprinting are still unknown. Objective: The objective of the study was to test the hypothesis that short duration sprinting increases blood glucose levels via a disproportionate increase in glucose rate of appearance (Ra) relative to glucose rate of disappearance (Rd). Subjects and Experimental Design: Eight T1DM participants were subjected to a euglycemic-euinsulinemic clamp and, together with nondiabetic participants, were infused with [6,6-2H]glucose before sprinting for 10 sec and allowed to recover for 2 h. Results: In response to sprinting, blood glucose levels increased by 1.2 ± 0.2 mmol/liter (P &lt; 0.05) within 30 min of recovery in T1DM participants and remained stable afterward, whereas glycemia rose by only 0.40 ± 0.05 mmol/liter in the nondiabetic group. During recovery, glucose Ra did not change in both groups (P &gt; 0.05), but glucose Rd in the nondiabetic and diabetic participants fell rapidly after exercise before returning within 30 min to preexercise levels. After sprinting, the levels of plasma epinephrine, norepinephrine, and GH rose transiently in both experimental groups (P &lt; 0.05). Conclusion: A sprint as short as 10 sec can increase plasma glucose levels in nondiabetic and T1DM individuals, with this rise resulting from a transient decline in glucose Rd rather than from a disproportionate rise in glucose Ra relative to glucose Rd as reported with intense aerobic exercise.


2011 ◽  
Vol 111 (6) ◽  
pp. 1637-1643 ◽  
Author(s):  
Joseph R. Libonati ◽  
Abdelkarim Sabri ◽  
Canhua Xiao ◽  
Scott M. MacDonnell ◽  
Brian F. Renna

The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (∼60% V̇o2 peak, 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (AktPi), Bad, phosphorylated Bad (BadPi) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY ( P < 0.05), concomitant with increased calcineurin mRNA ( P < 0.05). There was a rightward shift in the LV/PV ( P < 0.05) and a reduction in systolic elastance (Es) in SHR vs. WKY. Exercise training corrected Es in SHR ( P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while BadPi, c-IAP, and x-IAP were significantly lower in SHR relative to WKY ( P < 0.05). Exercise training increased BadPi in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY ( P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.


2017 ◽  
Vol 34 (9) ◽  
pp. 1291-1295 ◽  
Author(s):  
M. B. Abraham ◽  
R. J. Davey ◽  
M. N. Cooper ◽  
N. Paramalingam ◽  
M. J. O'Grady ◽  
...  

Diabetes Care ◽  
2013 ◽  
Vol 36 (12) ◽  
pp. 4163-4165 ◽  
Author(s):  
R. J. Davey ◽  
V. A. Bussau ◽  
N. Paramalingam ◽  
L. D. Ferreira ◽  
E. M. Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document