Novel Aspects of White Adipose Tissue Browning by Thyroid Hormones

2019 ◽  
Vol 128 (06/07) ◽  
pp. 446-449 ◽  
Author(s):  
Kerstin Krause

AbstractThyroid hormones are essential for the full thermogenic capacity of brown adipose tissue. The thermogenic response of brown adipocytes to thyroid hormones is resulting from the synergistic interaction of thyroid hormones with the sympathetic nervous system. In recent years, evidence has been provided that thyroid hormones also induce the browning of white adipose tissues. This review will provide a brief overview about the recent findings regarding the effects of thyroid hormones on adipose tissue thermogenesis including central and peripheral regulation of white adipose tissue browning.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haruka Kimura ◽  
Tomohisa Nagoshi ◽  
Yuhei Oi ◽  
Akira Yoshii ◽  
Yoshiro Tanaka ◽  
...  

AbstractIncreasing evidence suggests natriuretic peptides (NPs) coordinate inter-organ metabolic crosstalk with adipose tissues and play a critical role in energy metabolism. We recently reported A-type NP (ANP) raises intracellular temperature in cultured adipocytes in a low-temperature-sensitive manner. We herein investigated whether exogenous ANP-treatment exerts a significant impact on adipose tissues in vivo. Mice fed a high-fat-diet (HFD) or normal-fat-diet (NFD) for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. ANP-treatment significantly ameliorated HFD-induced insulin resistance. HFD increased brown adipose tissue (BAT) cell size with the accumulation of lipid droplets (whitening), which was suppressed by ANP-treatment (re-browning). Furthermore, HFD induced enlarged lipid droplets in inguinal white adipose tissue (iWAT), crown-like structures in epididymal WAT, and hepatic steatosis, all of which were substantially attenuated by ANP-treatment. Likewise, ANP-treatment markedly increased UCP1 expression, a specific marker of BAT, in iWAT (browning). ANP also further increased UCP1 expression in BAT with NFD. Accordingly, cold tolerance test demonstrated ANP-treated mice were tolerant to cold exposure. In summary, exogenous ANP administration ameliorates HFD-induced insulin resistance by attenuating hepatic steatosis and by inducing adipose tissue browning (activation of the adipose tissue thermogenic program), leading to in vivo thermogenesis during cold exposure.


1983 ◽  
Vol 245 (6) ◽  
pp. E582-E586 ◽  
Author(s):  
M. Hayashi ◽  
T. Nagasaka

Fasting-induced changes in thermogenic responses to norepinephrine (NE, 4.0 micrograms X kg-1 X min-1 iv) were studied in anesthetized rats previously cold acclimated. The rats were divided into five groups at the end of 30–40 days of cold acclimation (5 degrees C). The five groups were kept for 5 days at 25 degrees C and fed (intact fed), fasted (intact fasted), fasted with daily treatment with thyroxine (T4, 2 micrograms/kg sc), thyroidectomized and fed, or thyroidectomized and fasted. In the intact fasted group, in which the weight of brown adipose tissue decreased, NE-induced increases in oxygen consumption, colonic temperature (T col), and temperature of the interscapular brown adipose tissue (TBAT) were markedly suppressed. The two thyroidectomized groups also showed a reduction in thermogenic response. In these three groups, TBAT was lower than Tcol throughout NE infusion. In the T4-treated fasted group, fasting-induced suppression of thermogenic response to NE was largely prevented. In the intact fed and the T4-treated fasted groups, TBAT attained higher values than Tcol during NE infusion. Plasma levels of thyroid hormones were significantly lower in the intact fasted group than in the intact fed or the T4-treated fasted group. These results suggest that fasting-induced suppression of the thermogenic response to NE is largely due to the reduced thermogenic response of brown adipose tissue to NE. The lowering of the levels of the thyroid hormones induced by fasting may be one of a number of causes of the reduction in the thermogenic response of brown adipose tissue.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 308 ◽  
Author(s):  
Hyo-Geun Lee ◽  
Yu An Lu ◽  
Xining Li ◽  
Ji-Min Hyun ◽  
Hyun-Soo Kim ◽  
...  

Obesity is a serious metabolic syndrome characterized by high levels of cholesterol, lipids in the blood, and intracellular fat accumulation in adipose tissues. It is known that the suppression of adipogenic protein expression is an effective approach for the treatment of obesity, and regulates fatty acid storage and transportation in adipose tissues. The 60% ethanol extract of Grateloupia elliptica (GEE), a red seaweed from Jeju Island in Korea, was shown to exert anti-adipogenic activity in 3T3-L1 cells and in mice with high-fat diet (HFD)-induced obesity. GEE inhibited intracellular lipid accumulation in 3T3-L1 cells, and significantly reduced expression of adipogenic proteins. In vivo experiments indicated a significant reduction in body weight, as well as white adipose tissue (WAT) weight, including fatty liver, serum triglycerides, total cholesterol, and leptin contents. The expression of the adipogenic proteins, SREBP-1 and PPAR-γ, was significantly decreased by GEE, and the expression of the metabolic regulator protein was increased in WAT. The potential of GEE was shown in WAT, with the downregulation of PPAR-γ and C/EBP-α mRNA; in contrast, in brown adipose tissue (BAT), the thermogenic proteins were increased. Collectively, these research findings suggest the potential of GEE as an effective candidate for the treatment of obesity-related issues via functional foods or pharmaceutical agents.


2018 ◽  
Author(s):  
Adilson Guilherme ◽  
David J Pedersen ◽  
Felipe Henriques ◽  
Alexander H. Bedard ◽  
Elizabeth Henchey ◽  
...  

ABSTRACTWhite adipose tissue (WAT) secretes factors to communicate with other metabolic organs to maintain energy homeostasis. We previously reported that perturbation of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) causes expansion of sympathetic neurons within white adipose tissue (WAT) and the appearance of “beige” adipocytes. Here we report evidence that white adipocyte DNL activity is also coupled to neuronal regulation and thermogenesis in brown adipose tissue (BAT). Induced deletion of FASN in all adipocytes in mature mice (iAdFASNKO) enhanced sympathetic innervation and neuronal activity as well as UCP1 expression in both WAT and BAT. In contrast, selective ablation of FASN in brown adipocytes of mice (iUCP1FASNKO) failed to modulate sympathetic innervation and the thermogenic program in BAT. Surprisingly, DNL in brown adipocytes was also dispensable in maintaining euthermia when UCP1FASNKO mice were cold-exposed. These results indicate that DNL in white adipocytes influences long distance signaling to BAT, which can modify BAT sympathetic innervation and expression of genes involved in thermogenesis.


2018 ◽  
Vol 315 (5) ◽  
pp. E815-E824 ◽  
Author(s):  
Sébastien M. Labbé ◽  
Alexandre Caron ◽  
William T. Festuccia ◽  
Roger Lecomte ◽  
Denis Richard

Brown adipose tissue (BAT) thermogenesis is a key controller of energy metabolism. In response to cold or other adrenergic stimuli, brown adipocytes increase their substrate uptake and oxidative activity while uncoupling ATP synthesis from the mitochondrial respiratory chain activity. Brown adipocytes are found in classic depots such as in the interscapular BAT (iBAT). They can also develop in white adipose tissue (WAT), such as in the inguinal WAT (iWAT), where their presence has been associated with metabolic improvements. We previously reported that the induction of oxidative metabolism in iWAT is low compared with that of iBAT, even after sustained adrenergic stimulation. One explanation to this apparent lack of thermogenic ability of iWAT is the presence of an active iBAT, which may prevent the full activation of iWAT. In this study, we evaluated whether iBAT denervation-induced browning of white fat enhanced the thermogenic activity of iWAT following cold acclimation, under beta-3 adrenergic stimulation (CL 316,243). Following a bilateral denervation of iBAT, we assessed energy balance, evaluated the oxidative activity of iBAT and iWAT using 11C-acetate, and quantified the dynamic glucose uptake of those tissues using 2-deoxy-2-[18F]- fluoro-d-glucose. Our results indicate that despite portraying marked browning and mildly enhanced glucose uptake, iWAT of cold-adapted mice does not exhibit significant oxidative activity following beta-3 adrenergic stimulation in the absence of a functional iBAT. The present results suggest that iWAT is not readily recruitable as a thermogenic organ even when functional iBAT is lacking.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1626
Author(s):  
Linjie Wang ◽  
Xingyue Chen ◽  
Tianzeng Song ◽  
Xujia Zhang ◽  
Siyuan Zhan ◽  
...  

Brown adipose tissues have unique non-shivering thermogenesis functions, can be found in newborn ruminate animals, and then are gradually replaced by white adipose tissues in adulthood. For the purpose of exploring the intrinsic mechanism underlying the conversion process from brown (BAT) to white adipose tissue (WAT), it is necessary to utilize Quantitative PCR (qPCR) to study gene expression profiling. In this study, we identified reference genes that were consistently expressed during the transformation from goat BAT to WAT using RNA-seq data. Then, twelve genes were evaluated as candidate reference genes for qPCR in goat perirenal adipose tissue using three tools (geNorm, Normfinder, and BestKeeper). In addition, the selected reference genes were used to normalize the gene expression of PGC-1α and GPAT4. It was found that traditional reference genes, such as GAPDH, RPLP0, HPRT1, and PPIA were not suitable for target gene normalization. In contrast, CTNNB, PFDN5, and EIF3M, selected from RNA sequencing data, showed the least variation and were recommended as the best reference genes during the transformation from BAT to WAT.


1992 ◽  
Vol 103 (4) ◽  
pp. 931-942 ◽  
Author(s):  
B. Cousin ◽  
S. Cinti ◽  
M. Morroni ◽  
S. Raimbault ◽  
D. Ricquier ◽  
...  

Brown adipocytes are thermogenic cells which play an important role in energy balance. Their thermogenic activity is due to the presence of a mitochondrial uncoupling protein (UCP). Until recently, it was admitted that in rodents brown adipocytes were mainly located in classical brown adipose tissue (BAT). In the present study, we have investigated the presence of UCP protein or mRNA in white adipose tissue (WAT) of rats. Using polymerase chain reaction or Northern blot hybridization, UCP mRNA was detected in mesenteric, epidydimal, retroperitoneal, inguinal and particularly in periovarian adipose depots. The uncoupling protein was detected by Western blotting in mitochondria from periovarian adipose tissue. When rats were submitted to cold or to treatment with a beta-adrenoceptor agonist, UCP expression was increased in this tissue as in typical brown fat. Moreover, the expression was decreased in obese fa/fa rats compared to lean controls. Morphological studies showed that periovarian adipose tissue of rats kept at 24 degrees C contained cells with numerous typical BAT mitochondria with or without multilocular lipid droplets. Immunocytochemistry confirmed that multilocular cells expressed mitochondrial UCP. Furthermore, the number of brown adipocytes and the density of mitochondrial cristae increased in parallel with exposure to cold. These results demonstrate that adipocytes expressing UCP are present in adipose deposits considered as white fat. They suggest the existence of a continuum in rodents between BAT and WAT, and a great plasticity between adipose tissue phenotypes. The physiological importance of brown adipocytes in WAT and the regulation of UCP expression remain open questions.


1982 ◽  
Vol 206 (3) ◽  
pp. 667-669 ◽  
Author(s):  
P. John Weaire ◽  
Tazeen F. Kanagasabai

Cycloplasmic preparations from brown and white adipose tissues were assayed for three lipogenic enzymes throughout a programme of starvation followed by refeeding on either a normal or a white-bread diet. In the brown adipose tissue of rats fed on a white-bread diet the three enzymes were elevated to levels significantly higher than those in white adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document