Recent Strategies in Non-Heme-Type Metal Complexes-Catalyzed Site-, Chemo-, and Enantioselective C–H Oxygenations

Synthesis ◽  
2021 ◽  
Author(s):  
Daiki Doiuchi ◽  
Tatsuya Uchida

C–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted to the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for the step-, atom- and redox-economic organic synthesis. C–H oxidation is one of a typical C–H functionalization, to afford hydroxy and carbonyl groups, which are essential key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complicated natural products. In this paper, the recent developments, during the last fourteen years, of non-heme-type complex-catalyzed C–H oxidations are reviewed.

2020 ◽  
Vol 56 (4) ◽  
pp. 503-514 ◽  
Author(s):  
José Tiago M. Correia ◽  
Vitor A. Fernandes ◽  
Bianca T. Matsuo ◽  
José A. C. Delgado ◽  
Wanderson C. de Souza ◽  
...  

Primary amines are one of the most predominant functional groups found in organic molecules. This review covers the most recent developments on photocatalytic deaminative strategies by using Katritzky Salts as alkyl radical reservoirs.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 697 ◽  
Author(s):  
Robson Carlos Alnoch ◽  
Leandro Alves dos Santos ◽  
Janaina Marques de Almeida ◽  
Nadia Krieger ◽  
Cesar Mateo

The utilization of biomaterials as novel carrier materials for lipase immobilization has been investigated by many research groups over recent years. Biomaterials such as agarose, starch, chitin, chitosan, cellulose, and their derivatives have been extensively studied since they are non-toxic materials, can be obtained from a wide range of sources and are easy to modify, due to the high variety of functional groups on their surfaces. However, although many lipases have been immobilized on biomaterials and have shown potential for application in biocatalysis, special features are required when the biocatalyst is used in non-conventional media, for example, in organic solvents, which are required for most reactions in organic synthesis. In this article, we discuss the use of biomaterials for lipase immobilization, highlighting recent developments in the synthesis and functionalization of biomaterials using different methods. Examples of effective strategies designed to result in improved activity and stability and drawbacks of the different immobilization protocols are discussed. Furthermore, the versatility of different biocatalysts for the production of compounds of interest in organic synthesis is also described.


2018 ◽  
Vol 16 (25) ◽  
pp. 4596-4614 ◽  
Author(s):  
Ioanna K. Sideri ◽  
Errika Voutyritsa ◽  
Christoforos G. Kokotos

This review is focused on recent developments in the use of small organic molecules as photocatalysts.


2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


2020 ◽  
Vol 17 (6) ◽  
pp. 740-753
Author(s):  
Bishwajit Changmai ◽  
Gunindra Pathak ◽  
Jasha Momo H. Anal ◽  
Lalthazuala Rokhum

Due to its inherent advantages such as easy recovery and reuse of the catalysts/ reagents, and environmentally friendly nature, the heterogeneous system has gain popularity in the realm of organic synthesis. In recent years, several chemically or biologically potent molecules are achieved through heterogeneous synthesis strategies. By recalling some of the classical fundamentals of the heterogeneous system in important organic synthesis, this mini-review outlines the recent developments in the applications heterogeneous catalysts and reagents; particularly in the solid phase synthesis, esterification and transesterification reactions to produce biodiesel, and Henry reaction.


2020 ◽  
Vol 07 ◽  
Author(s):  
Avik K. Bagdi ◽  
Papiya Sikdar

Abstract:: Organic synthesis under environment friendly conditions has great impact in the sustainable development. In this context, visible light photocatalysis has emerged as a green model as this offers an energy-efficient pathway towards the organic transformation. Different transition-metal catalysts (Ir-, Ru-, Cu- etc) and organic dyes (eosin Y, rose bengal, methylene blue etc) are well-known photocatalysts in organic synthesis. Apart from the well-known organophotoredox catalysts, rhodamines (Rhodamine B and Rhodamine 6G) have been also employed as efficient photocatalysts for different organic transformations. In this review, we will focus on the photocatalysis by rhodamines in organic synthesis. Mechanistic pathway of the methodologies will also be discussed. We believe this review will stimulate the employment of rhodamines in the visible light photocatalysis for efficient organic transformations in the future.


2020 ◽  
Vol 3 (1) ◽  
pp. 57
Author(s):  
Luka Barešić ◽  
Davor Margetić ◽  
Zoran Glasovac

The cycloaddition strategy was employed in order to obtain a 7-oxanorbornene framework substituted with a guanidine moiety or its precursor functional groups: protected amine or thiourea. In order to optimize the conditions for the cycloaddition, several environmentally-friendly methods—microwave assisted organic synthesis, high pressure synthesis, high speed vibrational milling, and ultrasound assisted synthesis—were employed. The outcomes of the cycloaddition reactions were interpreted in terms of endo/exo selectivity, the conversion of the reactants to the product, and the isolated yields. In general, our results indicated the HP and HSVM approaches as the methods of choice to give good yields and conversions.


2010 ◽  
Vol 2010 (4) ◽  
pp. 591-605 ◽  
Author(s):  
J. S. Yadav ◽  
Aneesh Antony ◽  
Jimil George ◽  
Basi V. Subba Reddy

Sign in / Sign up

Export Citation Format

Share Document