Nicotinic Acid Effects on Insulin Sensitivity and Hepatic Lipid Metabolism: An In Vivo to In Vitro Study

2014 ◽  
Vol 46 (06) ◽  
pp. 390-396 ◽  
Author(s):  
E. Blond ◽  
J. Rieusset ◽  
M. Alligier ◽  
S. Lambert-Porcheron ◽  
N. Bendridi ◽  
...  
2020 ◽  
Vol 295 (50) ◽  
pp. 17310-17322
Author(s):  
Yann Deleye ◽  
Alexia Karen Cotte ◽  
Sarah Anissa Hannou ◽  
Nathalie Hennuyer ◽  
Lucie Bernard ◽  
...  

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo. Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


2019 ◽  
Vol 10 (11) ◽  
pp. 7356-7365 ◽  
Author(s):  
Si-Jian Wang ◽  
Qian Chen ◽  
Meng-Yang Liu ◽  
Hai-Yang Yu ◽  
Jing-Qi Xu ◽  
...  

This paper first demonstrated that rosemary has an effective function to regulate lipid metabolism through the AMPK/SREBP1c signaling pathway in vivo and in vitro.


2021 ◽  
Author(s):  
Ying-Yin Sun ◽  
Dong-Qing Wu ◽  
Na-Na Yin ◽  
Lei Yang ◽  
Xin Chen ◽  
...  

Background & Aims: Alcoholic fatty liver (AFL) is an early form of alcoholic liver disease (ALD) that usually manifests as lipid synthesis abnormalities in hepatocytes. Arrb2 is involved in multiple biological processes. This study aimed to explore the role of Arrb2 in the regulation of lipid metabolism in AFL and the underlying mechanism and identify potential targets for the treatment of AFL. Methods: The expression of Arrb2 was detected in liver tissues obtained from AFL patients and Gao-binge AFL model mice. In addition, we specifically knocked down Arrb2 in AFL mouse liver in vivo and used Arrb2-siRNA or pEX3-Arrb2 to silence or overexpress Arrb2 in AML-12 cells in vitro to explore the functional role and underlying regulatory mechanism of Arrb2 in AFL. Finally, we investigated whether Arrb2 could cause changes in hepatic lipid metabolites, thereby leading to dysregulation of lipid metabolism based on liquid chromatography-mass spectrometry (LC-MS) analysis. Results: Arrb2 was upregulated in the livers of AFL patients and AFL mice. The in vivo and in vitro results confirmed that Arrb2 could induce lipid accumulation and metabolism disorders. Mechanistically, Arrb2 induced hepatic metabolism disorder via AMP-activated protein kinase (AMPK) pathway. The results of LC-MS analysis revealed that hepatic lipid metabolites with the most significant differences were primary bile acids. Conclusions: Arrb2 induces hepatic lipid metabolism disorders via AMPK pathway in AFL. On one hand, Arrb2 increases fatty acid synthesis. On the other hand, Arrb2 could increase the cholesterol synthesis, thereby leading to the upregulation of primary bile acid levels.


2015 ◽  
Vol 17 ◽  
pp. 761-773 ◽  
Author(s):  
Isabel Cordero-Herrera ◽  
María Ángeles Martín ◽  
Elisa Fernández-Millán ◽  
Carmen Álvarez ◽  
Luis Goya ◽  
...  

2018 ◽  
Vol Volume 13 ◽  
pp. 7303-7318 ◽  
Author(s):  
Junchao Duan ◽  
Shuang Liang ◽  
Lin Feng ◽  
Yang Yu ◽  
Zhiwei Sun

2014 ◽  
Author(s):  
Ivo Dumic-Cule ◽  
Dunja Rogic ◽  
Damir Jezek ◽  
Lovorka Grgurevic ◽  
Slobodan Vukicevic

Sign in / Sign up

Export Citation Format

Share Document